skip to main content

Search for: All records

Creators/Authors contains: "Piccoli, Benedetto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $\end{document} and removed \begin{document}$ R $\end{document} populations by ODEs and the infected \begin{document}$ I $\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$ S $\end{document} and \begin{document}$ R $\end{document} contains terms that are related to the measure \begin{document}$ I $\end{document}. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.

    Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available December 1, 2022
  4. During the Covid-19 pandemic a key role is played by vaccination to combat the virus. There are many possible policies for prioritizing vaccines, and different criteria for optimization: minimize death, time to herd immunity, functioning of the health system. Using an age-structured population compartmental finite-dimensional optimal control model, our results suggest that the eldest to youngest vaccination policy is optimal to minimize deaths. Our model includes the possible infection of vaccinated populations. We apply our model to real-life data from the US Census for New Jersey and Florida, which have a significantly different population structure. We also provide various estimates of the number of lives saved by optimizing the vaccine schedule and compared to no vaccination.

    Free, publicly-accessible full text available January 1, 2023
  5. The outbreak of COVID-19 resulted in high death tolls all over the world. The aim of this paper is to show how a simple SEIR model was used to make quick predictions for New Jersey in early March 2020 and call for action based on data from China and Italy. A more refined model, which accounts for social distancing, testing, contact tracing and quarantining, is then proposed to identify containment measures to minimize the economic cost of the pandemic. The latter is obtained taking into account all the involved costs including reduced economic activities due to lockdown and quarantining as well as the cost for hospitalization and deaths. The proposed model allows one to find optimal strategies as combinations of implementing various non-pharmaceutical interventions and study different scenarios and likely initial conditions.
    Free, publicly-accessible full text available November 1, 2022
  6. Abstract In this paper, we consider a kinetic description of follow-the-leader traffic models, which we use to study the effect of vehicle-wise driver-assist control strategies at various scales, from that of the local traffic up to that of the macroscopic stream of vehicles. We provide theoretical evidence of the fact that some typical control strategies, such as the alignment of the speeds and the optimisation of the time headways, impact on the local traffic features (for instance, the speed and headway dispersion responsible for local traffic instabilities) but have virtually no effect on the observable macroscopic traffic trends (for instance, the flux/throughput of vehicles). This unobvious conclusion, which is in very nice agreement with recent field studies on autonomous vehicles, suggests that the kinetic approach may be a valid tool for an organic multiscale investigation and possibly the design of driver-assist algorithms.