skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Piccoli, Benedetto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The COVID-19 pandemic highlighted the need to quickly respond, via public policy, to the onset of an infectious disease breakout. Deciding the type and level of interventions a population must consider to mitigate risk and keep the disease under control could mean saving thousands of lives. Many models were quickly introduced highlighting lockdowns, testing, contact tracing, travel policies, later on vaccination, and other intervention strategies along with costs of implementation. Here, we provided a framework for capturing population heterogeneity whose consideration may be crucial when developing a mitigation strategy based on non-pharmaceutical interventions. Precisely, we used age-stratified data to segment our population into groups with unique interactions that policy can affect such as school children or the oldest of the population, and formulated a corresponding optimal control problem considering the economic cost of lockdowns and deaths. We applied our model and numerical methods to census data for the state of New Jersey and determined the most important factors contributing to the cost and the optimal strategies to contained the pandemic impact.

     
    more » « less
  2. The COVID-19 pandemic lit a fire under researchers who have subsequently raced to build models which capture various physical aspects of both the biology of the virus and its mobility throughout the human population. These models could include characteristics such as different genders, ages, frequency of interactions, mutation of virus, etc. Here, we propose two mathematical formulations to include virus mutation dynamics. The first uses a compartmental epidemiological model coupled with a discrete-time finite-state Markov chain. If one includes a nonlinear dependence of the transition matrix on current infected, the model is able to reproduce pandemic waves due to different variants. The second approach expands such an idea to a continuous state-space leveraging a combination of ordinary differential equations with an evolution equation for measure. This approach allows to include reinfections with partial immunity with respect to variants genetically similar to that of first infection. 
    more » « less
  3. Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $\end{document} and removed \begin{document}$ R $\end{document} populations by ODEs and the infected \begin{document}$ I $\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$ S $\end{document} and \begin{document}$ R $\end{document} contains terms that are related to the measure \begin{document}$ I $\end{document}. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.

     
    more » « less
  4. During the Covid-19 pandemic a key role is played by vaccination to combat the virus. There are many possible policies for prioritizing vaccines, and different criteria for optimization: minimize death, time to herd immunity, functioning of the health system. Using an age-structured population compartmental finite-dimensional optimal control model, our results suggest that the eldest to youngest vaccination policy is optimal to minimize deaths. Our model includes the possible infection of vaccinated populations. We apply our model to real-life data from the US Census for New Jersey and Florida, which have a significantly different population structure. We also provide various estimates of the number of lives saved by optimizing the vaccine schedule and compared to no vaccination.

     
    more » « less