skip to main content


Search for: All records

Creators/Authors contains: "Pillaud-Vivien, Loucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime. While the information-theoretic sample complexity to recover the hidden direction is lin- ear in the dimension d, we show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require Ω(dk⋆/2) samples, where k⋆ is a “generative” exponent associated with the model that we explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by establishing matching upper bounds using a partial-trace algorithm. Therefore, our results pro- vide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class) whenever k⋆ > 2. To complete the study, we construct smooth and Lipschitz deterministic target functions with arbitrarily large generative exponents k⋆. 
    more » « less
    Free, publicly-accessible full text available June 26, 2025
  2. Sparse high-dimensional functions have arisen as a rich framework to study the behavior of gradient-descent methods using shallow neural networks, showcasing their ability to perform feature learning beyond linear models. Amongst those functions, the simplest are single-index models f(x) = φ(x · θ∗), where the labels are generated by an arbitrary non-linear scalar link function φ applied to an unknown one-dimensional projection θ∗ of the input data. By focusing on Gaussian data, several recent works have built a remarkable picture, where the so-called information exponent (related to the regularity of the link function) controls the required sample complexity. In essence, these tools exploit the stability and spherical symmetry of Gaussian distributions. In this work, building from the framework of [Ben Arous et al., 2021], we explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry might be violated. Focusing on the planted setting where φ is known, our main results establish that Stochastic Gradient Descent can efficiently recover the unknown direction θ∗ in the high- dimensional regime, under assumptions that extend previous works [Yehudai and Shamir, 2020, Wu, 2022] 
    more » « less