Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Summary Experiments are often used to produce emulators of deterministic computer code. This article introduces composite grid experimental designs and a sequential method for building the designs for accurate emulation. Computational methods are developed that enable fast and exact Gaussian process inference even with large sample sizes. We demonstrate that the proposed approach can produce emulators that are orders of magnitude more accurate than current approximations at a comparable computational cost.more » « less
-
We propose a framework and specific algorithms for screening a large (perhaps countably infinite) spaceof feasible solutions to generate a subset containing the optimal solution with high confidence. We attainthis goal even when only a small fraction of the feasible solutions are simulated. To accomplish it weexploit structural information about the space of functions within which the true objective function lies, andthen assess how compatible optimality is for each feasible solution with respect to the observed simulation outputs and the assumed function space. The result is a set of plausible optima. This approach can be viewed as a way to avoid slow simulation by leveraging fast optimization. Explicit formulations of the general approach are provided when the space of functions is either Lipschitz or convex. We establish both small- and large-sample properties of the approach, and provide two numerical examples.more » « less
-
Abstract We present the results of a National Science Foundation Project Scoping Workshop, the purpose of which was to assess the current status of calculations for the nuclear matrix elements governing neutrinoless double-beta decay and determine if more work on them is required. After reviewing important recent progress in the application of effective field theory, lattice quantum chromodynamics, and ab initio nuclear-structure theory to double-beta decay, we discuss the state of the art in nuclear-physics uncertainty quantification and then construct a roadmap for work in all these areas to fully complement the increasingly sensitive experiments in operation and under development. The roadmap includes specific projects in theoretical and computational physics as well as the use of Bayesian methods to quantify both intra- and inter-model uncertainties. The goal of this ambitious program is a set of accurate and precise matrix elements, in all nuclei of interest to experimentalists, delivered together with carefully assessed uncertainties. Such calculations will allow crisp conclusions from the observation or non-observation of neutrinoless double-beta decay, no matter what new physics is at play.more » « less
An official website of the United States government

Full Text Available