skip to main content


Search for: All records

Creators/Authors contains: "Powell, Diana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a new two-dimensional, bin-scheme microphysical model of cloud formation in the atmospheres of hot Jupiters that includes the effects of longitudinal gas and cloud transport. We predict cloud particle size distributions as a function of planetary longitude and atmospheric height for a grid of hot Jupiters with equilibrium temperatures ranging from 1000 to 2100 K. The predicted 2D cloud distributions vary significantly from models that do not consider horizontal cloud transport and we discuss the microphysical and transport timescales that give rise to the differences in 2D versus 1D models. We find that the horizontal advection of cloud particles increases the cloud formation efficiency for nearly all cloud species and homogenizes cloud distributions across the planets in our model grid. In 2D models, certain cloud species are able to be transported and survive on the daysides of hot Jupiters in cases where 1D models would not predict the existence of clouds. We demonstrate that the depletion of condensible gas species varies as a function of longitude and atmospheric height across the planet, which impacts the resultant gas-phase chemistry. Finally, we discuss various model sensitivities including the sensitivity of cloud properties to microphysical parameters, which we find to be substantially less than the sensitivity to the atmospheric thermal structure and horizontal and vertical transport of condensible material.

     
    more » « less
    Free, publicly-accessible full text available June 21, 2025
  2. Abstract

    We present a semi-analytic model for the growth, drift, desorption, and fragmentation of millimeter- to meter-sized particles in protoplanetary disks. Fragmentation occurs where particle collision velocities exceed critical fragmentation velocities. Using this criterion, we produce fragmentation regions in disk orbital radius–particle size phase space for particles with a range of material properties, structures, and compositions (including SiO2, Mg2SiO4, H2O, CO2, and CO). For reasonable disk conditions, compact aggregate H2O, CO2, and CO ice particles do not reach destructive relative velocities and are thus not likely to undergo collisional fragmentation. Uncoated silicate particles are more susceptible to collisional destruction and are expected to fragment in the inner disk, consistent with previous work. We then calculate the growth, drift, and sublimation of small particles, initially located in the outer disk. We find that ice-coated particles can avoid fragmentation as they grow and drift inward under a substantial range of disk conditions, as long as the particles are aggregates composed of 0.1μm-sized monomers. Such particles may undergo runaway growth in disk regions abundant in H2O or CO2ice, depending on the assumed disk temperature structure. These results indicate that icy collisional growth to planetesimally relevant sizes may happen efficiently throughout a disk’s lifetime, and is particularly robust at early times when the disk’s dust-to-gas ratio is comparable to that of the interstellar medium.

     
    more » « less
  3. Ruane, Garreth J (Ed.)
  4. Ruane, Garreth J (Ed.)
  5. Ruane, Garreth J (Ed.)
  6. Ruane, Garreth J (Ed.)
  7. Abstract

    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2in such an atmosphere is through photochemical processes5,6. Here we show that the SO2distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7with NIRSpec PRISM (2.7σ)8and G395H (4.5σ)9. SO2is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

     
    more » « less
  8. Abstract

    The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1–4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5–9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6–2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement (‘metallicity’) of about 10–30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet’s terminator.

     
    more » « less
  9. Abstract

    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3–5and high-resolution ground-based6–8facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2(28.5σ) and H2O (21.5σ), and identify SO2as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.

     
    more » « less
  10. Abstract

    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs.1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs.3,4,) or disequilibrium processes in the upper atmosphere (for example, refs.5,6).

     
    more » « less