skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-dimensional Models of Microphysical Clouds on Hot Jupiters. I. Cloud Properties
Abstract We present a new two-dimensional, bin-scheme microphysical model of cloud formation in the atmospheres of hot Jupiters that includes the effects of longitudinal gas and cloud transport. We predict cloud particle size distributions as a function of planetary longitude and atmospheric height for a grid of hot Jupiters with equilibrium temperatures ranging from 1000 to 2100 K. The predicted 2D cloud distributions vary significantly from models that do not consider horizontal cloud transport and we discuss the microphysical and transport timescales that give rise to the differences in 2D versus 1D models. We find that the horizontal advection of cloud particles increases the cloud formation efficiency for nearly all cloud species and homogenizes cloud distributions across the planets in our model grid. In 2D models, certain cloud species are able to be transported and survive on the daysides of hot Jupiters in cases where 1D models would not predict the existence of clouds. We demonstrate that the depletion of condensible gas species varies as a function of longitude and atmospheric height across the planet, which impacts the resultant gas-phase chemistry. Finally, we discuss various model sensitivities including the sensitivity of cloud properties to microphysical parameters, which we find to be substantially less than the sensitivity to the atmospheric thermal structure and horizontal and vertical transport of condensible material.  more » « less
Award ID(s):
2307463
PAR ID:
10531552
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations. 
    more » « less
  2. Abstract Advances in high‐performance computing make it possible to run atmospheric general circulation models (AGCMs) over an increasingly wider range of grid resolutions, using either globally uniform or variable‐resolution grids. In principle, this is an exciting opportunity to resolve atmospheric process and scales in a global model and in unprecedented detail, but in practice this grid flexibility is incompatible with the non‐ or weakly converging solutions with increasing horizontal resolution that have long characterized AGCMs. In the the Community Atmosphere Model (CAM), there are robust sensitivities to horizontal resolution that have persisted since the model was first introduced over thirty years ago; the atmosphere progressively dries and becomes less cloudy with resolution, and parametrized deep convective precipitation decreases at the expense of stratiform precipitation. This study documents a convergence experiment using CAM, version 6, and argues that a unifying cause, the sensitivity of resolved dynamical modes to native grid resolution, feeds back into other model components and explains these robust sensitivities to resolution. The increasing magnitudes of resolved vertical velocities with resolution are shown to fit an analytic scaling derived for the equations of motion at hydrostatic scales. This trend in vertical velocities results in an increase in resolved upward moisture fluxes at cloud base, balanced by an increase in stratiform precipitation rates with resolution. Compensating, greater magnitude subsiding motion with resolution has previously been shown to dry out the atmosphere and reduce cloud cover. Here, it is shown that both the increase in condensational heating from stratiform cloud formation and greater subsidence drying contribute to an increase in atmospheric stability with resolution, reducing the activity of parametrized convection. The impact of changing the vertical velocity field with native grid resolution cannot be ignored in any effort to recover convergent solutions in AGCMs, and, in particular, the development of scale‐aware physical parametrizations. 
    more » « less
  3. Abstract. Marine emissions of dimethyl sulfide (DMS) and the subsequent formation of its oxidation products methanesulfonic acid (MSA) and sulfuric acid (H2SO4) are well-known natural precursors of atmospheric aerosols, contributing to particle mass and cloud formation over ocean and coastal regions. Despite a long-recognized and well-studied role in the marine troposphere, DMS oxidation chemistry remains a work in progress within many current air quality and climate models, with recent advances exploring heterogeneous chemistry and uncovering previously unknown intermediate species. With the identification of additional DMS oxidation pathways and intermediate species that influence the eventual fate of DMS, it is important to understand the impact of these pathways on the overall sulfate aerosol budget and aerosol size distribution. In this work, we update and evaluate the DMS oxidation mechanism of the chemical transport model GEOS-Chem by implementing expanded DMS oxidation pathways in the model. These updates include gas- and aqueous-phase reactions, the formation of the intermediates dimethyl sulfoxide (DMSO) and methanesulfinic acid (MSIA), and cloud loss and aerosol uptake of the recently quantified intermediate hydroperoxymethyl thioformate (HPMTF). We find that this updated mechanism collectively decreases the global mean surface-layer gas-phase sulfur dioxide (SO2) mixing ratio by 40 % and enhances the sulfate aerosol (SO42-) mixing ratio by 17 %. We further perform sensitivity analyses exploring the contribution of cloud loss and aerosol uptake of HPMTF to the overall sulfur budget. Comparing modeled concentrations to available observations, we find improved biases relative to previous studies. To quantify the impacts of these chemistry updates on global particle size distributions and the mass concentration, we use the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics module coupled to GEOS-Chem and find that changes in particle formation and growth affect the size distribution of aerosol. With this new DMS-oxidation scheme, the global annual mean surface-layer number concentration of particles with diameters smaller than 80 nm decreases by 16.8 %, with cloud loss processes related to HPMTF being mostly responsible for this reduction. However, the global annual mean number of particles larger than 80 nm (corresponding to particles capable of acting as cloud condensation nuclei, CCN) increases by 3.8 %, suggesting that the new scheme promotes seasonal particle growth to these sizes. 
    more » « less
  4. Single- and multi-layer clouds are commonly observed over the Southern Ocean in varying synoptic settings, yet few studies have characterized and contrasted their properties. This study provides a statistical analysis of the microphysical properties of single- and multi-layer clouds using in-situ observations acquired during the Southern Ocean Cloud-Radiation Aerosol Transport Experimental Study. The relative frequencies of ice-containing samples (i.e., mixed and ice phase) for multi-layer clouds are 0.05–0.25 greater than for single-layer clouds, depending on cloud layer height. In multi-layer clouds, the lowest cloud layers have the highest ice-containing sample frequencies, which decrease with increasing cloud layer height up to the third highest cloud layer. This suggests a prominent seeder-feeder mechanism over the region. Ice nucleating particle (cloud condensation nuclei) concentrations are positively (negatively) correlated with ice-containing sample frequencies in select cases. Differences in microphysical properties are observed for single- and multi-layer clouds. Drop concentrations (size distributions) are greater (narrower) for single-layer clouds compared with the lowest multi-layer clouds. When differentiating cloud layers by top (single- and highest multi-layer clouds) and non-top layers (underlying multi-layer clouds), total particle size distributions (including liquid and ice) are similarly broader for non-top cloud layers. Additionally, drop concentrations in coupled environments are approximately double those in decoupled environments. 
    more » « less
  5. null (Ed.)
    Abstract In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case. 
    more » « less