Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 13, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Free, publicly-accessible full text available October 11, 2025
-
Boosting Employment of Resettled Refugees
Whether a resettled refugee finds employment in the United States depends in no small part on which host community they are first welcomed to. Every week, resettlement agencies are assigned a group of refugees who they are required to place in communities around the country. In “Dynamic Placement in Refugee Resettlement,” Ahani, Gölz, Procaccia, Teytelboym, and Trapp develop an allocation system that recommends where to place an incoming refugee family with the aim of boosting the overall employment success. Should capacities in high-employment areas be used up as quickly as possible, or does it make sense to hold back for a perfect match? The simple algorithm, based on two-stage stochastic programming, achieves over 98% of the hindsight-optimal employment, compared with under 90% for the greedy-like approaches that were previously used in practice. Their algorithm is now part of the Annie™ MOORE optimization software used by a leading American refugee resettlement agency.
Free, publicly-accessible full text available May 1, 2025 -
We present two models of how people form beliefs that are based on machine learning theory. We illustrate how these models give insight into observed human phenomena by showing how polarized beliefs can arise even when people are exposed to almost identical sources of information. In our first model, people form beliefs that are deterministic functions that best fit their past data (training sets). In that model, their inability to form probabilistic beliefs can lead people to have opposing views even if their data are drawn from distributions that only slightly disagree. In the second model, people pay a cost that is increasing in the complexity of the function that represents their beliefs. In this second model, even with large training sets drawn from exactly the same distribution, agents can disagree substantially because they simplify the world along different dimensions. We discuss what these models of belief formation suggest for improving people’s accuracy and agreement.