skip to main content


Search for: All records

Creators/Authors contains: "Procaccia, Ariel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Boosting Employment of Resettled Refugees

    Whether a resettled refugee finds employment in the United States depends in no small part on which host community they are first welcomed to. Every week, resettlement agencies are assigned a group of refugees who they are required to place in communities around the country. In “Dynamic Placement in Refugee Resettlement,” Ahani, Gölz, Procaccia, Teytelboym, and Trapp develop an allocation system that recommends where to place an incoming refugee family with the aim of boosting the overall employment success. Should capacities in high-employment areas be used up as quickly as possible, or does it make sense to hold back for a perfect match? The simple algorithm, based on two-stage stochastic programming, achieves over 98% of the hindsight-optimal employment, compared with under 90% for the greedy-like approaches that were previously used in practice. Their algorithm is now part of the Annie™ MOORE optimization software used by a leading American refugee resettlement agency.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. We present two models of how people form beliefs that are based on machine learning theory. We illustrate how these models give insight into observed human phenomena by showing how polarized beliefs can arise even when people are exposed to almost identical sources of information. In our first model, people form beliefs that are deterministic functions that best fit their past data (training sets). In that model, their inability to form probabilistic beliefs can lead people to have opposing views even if their data are drawn from distributions that only slightly disagree. In the second model, people pay a cost that is increasing in the complexity of the function that represents their beliefs. In this second model, even with large training sets drawn from exactly the same distribution, agents can disagree substantially because they simplify the world along different dimensions. We discuss what these models of belief formation suggest for improving people’s accuracy and agreement.

     
    more » « less
  3. null (Ed.)
    We study liquid democracy, a collective decision making paradigm that allows voters to transitively delegate their votes, through an algorithmic lens. In our model, there are two alternatives, one correct and one incorrect, and we are interested in the probability that the majority opinion is correct. Our main question is whether there exist delegation mechanisms that are guaranteed to outperform direct voting, in the sense of being always at least as likely, and sometimes more likely, to make a correct decision. Even though we assume that voters can only delegate their votes to better-informed voters, we show that local delegation mechanisms, which only take the local neighborhood of each voter as input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast, we design a non-local delegation mechanism that does provably outperform direct voting under mild assumptions about voters. 
    more » « less
  4. It is common to see a handful of reviewers reject a highly novel paper, because they view, say, extensive experiments as far more important than novelty, whereas the community as a whole would have embraced the paper. More generally, the disparate mapping of criteria scores to final recommendations by different reviewers is a major source of inconsistency in peer review. In this paper we present a framework inspired by empirical risk minimization (ERM) for learning the community's aggregate mapping. The key challenge that arises is the specification of a loss function for ERM. We consider the class of L(p,q) loss functions, which is a matrix-extension of the standard class of Lp losses on vectors; here the choice of the loss function amounts to choosing the hyperparameters p and q. To deal with the absence of ground truth in our problem, we instead draw on computational social choice to identify desirable values of the hyperparameters p and q. Specifically, we characterize p=q=1 as the only choice of these hyperparameters that satisfies three natural axiomatic properties. Finally, we implement and apply our approach to reviews from IJCAI 2017. 
    more » « less