Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mechanical computing encodes information in deformed states of mechanical systems, such as multistable structures. However, achieving stable mechanical memory in most multistable systems remains challenging and often limited to binary information. Here, we report leveraging coupling kinematic bifurcation in rigid cube–based mechanisms with elasticity to create transformable, multistable mechanical computing metastructures with stable, high-density mechanical memory. Simply stretching the planar metastructure forms a multistable corrugated platform. It allows for independent mechanical or magnetic actuation of individual bistable element, serving as pop-up voxels for display or binary units for various tasks such as information writing, erasing, reading, encryption, and mechanologic computing. Releasing the pre-stretched strain stabilizes the prescribed information, resistant to external mechanical or magnetic perturbations, whereas re-stretching enables editable mechanical memory, akin to selective zones or disk formatting for information erasure and rewriting. Moreover, the platform can be reprogrammed and transformed into a multilayer configuration to achieve high-density memory.more » « lessFree, publicly-accessible full text available June 28, 2025
-
Periodic spin–orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments—a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip–spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip–spin–orbit motions, we showcase the robot’s potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages.
Free, publicly-accessible full text available January 16, 2025 -
Autonomous maze navigation is appealing yet challenging in soft robotics for exploring priori unknown unstructured environments, as it often requires human-like brain that integrates onboard power, sensors, and control for computational intelligence. Here, we report harnessing both geometric and materials intelligence in liquid crystal elastomer–based self-rolling robots for autonomous escaping from complex multichannel mazes without the need for human-like brain. The soft robot powered by environmental thermal energy has asymmetric geometry with hybrid twisted and helical shapes on two ends. Such geometric asymmetry enables built-in active and sustained self-turning capabilities, unlike its symmetric counterparts in either twisted or helical shapes that only demonstrate transient self-turning through untwisting. Combining self-snapping for motion reflection, it shows unique curved zigzag paths to avoid entrapment in its counterparts, which allows for successful self-escaping from various challenging mazes, including mazes on granular terrains, mazes with narrow gaps, and even mazes with in situ changing layouts.
-
Abstract Miniature shape‐morphing soft actuators driven by external stimuli and fluidic pressure hold great promise in morphing matter and small‐scale soft robotics. However, it remains challenging to achieve both rich shape morphing and shape locking in a fast and controlled way due to the limitations of actuation reversibility and fabrication. Here, fully 3D‐printed, sub‐millimeter thin‐plate‐like miniature soft hydraulic actuators with shape memory effect (SME) for programable fast shape morphing and shape locking, are reported. It combines commercial high‐resolution multi‐material 3D printing of stiff shape memory polymers (SMPs) and soft elastomers and direct printing of microfluidic channels and 2D/3D channel networks embedded in elastomers in a single print run. Leveraging spatial patterning of hybrid compositions and expansion heterogeneity of microfluidic channel networks for versatile hydraulically actuated shape morphing, including circular, wavy, helical, saddle, and warping shapes with various curvatures, are demonstrated. The morphed shapes can be temporarily locked and recover to their original planar forms repeatedly by activating SME of the SMPs. Utilizing the fast shape morphing and locking in the miniature actuators, their potential applications in non‐invasive manipulation of small‐scale objects and fragile living organisms, multimodal entanglement grasping, and energy‐saving manipulators, are demonstrated.
-
Abstract While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process — in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with high
Z -resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization’s use in applications requiring small gaps with high accuracy in theZ -direction. -
Abstract Harnessing snapping, an instability phenomenon observed in nature (e.g., Venus flytraps), for autonomy has attracted growing interest in autonomous soft robots. However, achieving self‐sustained snapping and snapping‐driven autonomous motions in soft robots remains largely unexplored. Here, harnessing bistable, ribbon ring‐like structures for realizing self‐sustained snapping in a library of soft liquid‐crystal elastomer wavy rings under constant thermal and photothermal actuation are reported. The self‐sustained snapping induces continuous ring flipping that drives autonomous dancing or crawling motions on the ground and underwater. The 3D, free‐standing wavy rings employ either a highly symmetric or symmetry‐broken twisted shape with tunable geometric asymmetries. It is found that the former favors periodic self‐dancing motion in place due to isotropic friction, while the latter shows a directional crawling motion along the predefined axis of symmetry during fabrication due to asymmetric friction. It shows that the crawling speed can be tuned by the geometric asymmetries with a peak speed achieved at the highest geometric asymmetry. Lastly, it is shown that the autonomous crawling ring can also adapt its body shape to pass through a confined space that is over 30% narrower than its body size.