skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qin, Shuyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 27, 2025
  2. Abstract Direct electron detectors in scanning transmission electron microscopy give unprecedented possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions that underpin functional properties. Quantifying nanoscale structural features with statistical significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast mechanisms, which often results in a low signal-to-noise ratio and the superposition of multiple signals that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering signatures of ferroelectric domains, domain walls, and vortex textures can readily be disentangled with statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-breaking distortions across large areas, mapping structural changes at interfaces and topological structures with nanoscale spatial resolution. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract In pursuit of scientific discovery, vast collections of unstructured structural and functional images are acquired; however, only an infinitesimally small fraction of this data is rigorously analyzed, with an even smaller fraction ever being published. One method to accelerate scientific discovery is to extract more insight from costly scientific experiments already conducted. Unfortunately, data from scientific experiments tend only to be accessible by the originator who knows the experiments and directives. Moreover, there are no robust methods to search unstructured databases of images to deduce correlations and insight. Here, we develop a machine learning approach to create image similarity projections to search unstructured image databases. To improve these projections, we develop and train a model to include symmetry-aware features. As an exemplar, we use a set of 25,133 piezoresponse force microscopy images collected on diverse materials systems over five years. We demonstrate how this tool can be used for interactive recursive image searching and exploration, highlighting structural similarities at various length scales. This tool justifies continued investment in federated scientific databases with standardized metadata schemas where the combination of filtering and recursive interactive searching can uncover synthesis-structure-property relations. We provide a customizable open-source package (https://github.com/m3-learning/Recursive_Symmetry_Aware_Materials_Microstructure_Explorer) of this interactive tool for researchers to use with their data. 
    more » « less
  4. Abstract Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band‐excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so‐called “better”, “faster”, and “less‐biased” ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long‐short‐term memory (LSTM) β‐variational autoencoders (β‐VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback–Leibler‐divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment‐inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two‐step, three‐state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies. 
    more » « less
  5. Abstract Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic. 
    more » « less