Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vanadium oxides are known for their metal–insulator transition (MIT), with V3O5 being notable for its transition temperature exceeding room temperature. At about 430 K, this material shows a change in crystal symmetry accompanied with one order of magnitude increase in its electrical conductivity and alterations in its optical properties. Although the property changes during the MIT in V3O5 are less pronounced than those observed in VO2, its transition temperature is 90 K higher, making it appealing for applications requiring elevated temperatures. In this article, the high-frequency characteristics were determined in a V3O5 two-terminal device in the range from 5 to 35 GHz. The S-parameters showed that the return loss at room temperature was close to −1.5 dB, and the isolation between ports was approximately −50 dB. At temperatures above the metal–insulator transition, the isolation decreased to around −40 dB at 35 GHz. For S11 and S22, similar behavior was observed at room temperature, with a notable change in the S-parameter phase of the device. This behavior suggests that V3O5 may function well as a capacitor because the considerable change in phase could control the flow of electrical signals in devices. This property also may be used for matching purposes, especially considering its response to temperature changes. Additionally, conductivity calculation from S-parameters shows a decrease of approximately two orders of magnitude at 500 K and one order of magnitude at 300 K compared to DC values. These findings highlight V3O5 potential for integration into radio frequency devices that demand consistent performance in high-temperature environments.more » « less
-
Vanadium oxide V3O5 exhibits an insulator-to-metal transition (IMT) near 430 K, which is the highest value for all vanadium oxides exhibiting IMTs. This makes it interesting for advanced electronic applications. However, the properties of V3O5 have been little studied, and, in particular, there are no reports of experimentally determined mechanical properties. In this work, Young’s modulus of sputter-deposited V3O5 thin films has been determined by measuring the fundamental resonant frequency of V3O5-coated silicon microcantilevers using a laser beam deflection technique. After deposition, the films were characterized by x-ray diffraction, resistivity measurements, and atomic force microscopy. The value of Young’s modulus experimentally determined for V3O5 was 198 ± 14 GPa, which is slightly lower than the computationally derived values for bulk crystal V3O5.more » « less
-
Abstract The application of hardware‐based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming‐free operation with switching parameters that can be tuned by optical illumination. Using temperature‐dependent electrical measurements, conductive atomic force microscopy (C‐AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as −4.6% K−1at 423 K. The utility of these devices is illustrated by demonstrating in‐sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices.more » « less
-
Abstract Oxides that exhibit an insulator–metal transition can be used to fabricate energy‐efficient relaxation oscillators for use in hardware‐based neural networks but there are very few oxides with transition temperatures above room temperature. Here the structural, electrical, and thermal properties of V3O5thin films and their application as the functional oxide in metal/oxide/metal relaxation oscillators are reported. The V3O5devices show electroforming‐free volatile threshold switching and negative differential resistance (NDR) with stable (<3% variation) cycle‐to‐cycle operation. The physical mechanisms underpinning these characteristics are investigated using a combination of electrical measurements, in situ thermal imaging, and device modeling. This shows that conduction is confined to a narrow filamentary path due to self‐confinement of the current distribution and that the NDR response is initiated at temperatures well below the insulator–metal transition temperature where it is dominated by the temperature‐dependent conductivity of the insulating phase. Finally, the dynamics of individual and coupled V3O5‐based relaxation oscillators is reported, showing that capacitively coupled devices exhibit rich non‐linear dynamics, including frequency and phase synchronization. These results establish V3O5as a new functional material for volatile threshold switching and advance the development of robust solid‐state neurons for neuromorphic computing.more » « less
An official website of the United States government
