skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rafatirad, Setareh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The globalization of the manufacturing process and the supply chain for electronic hardware has been driven by the need to maximize profitability while lowering risk in a technologically advanced silicon sector. However, many hardware IPs’ security features have been broken because of the rise in successful hardware attacks. Existing security efforts frequently ignore numerous dangers in favor of fixing a particular vulnerability. This inspired the development of a unique method that uses emerging spin-based devices to obfuscate circuitry to secure hardware intellectual property (IP) during fabrication and the supply chain. We propose an Optimized and Automated Secure IC (OASIC) Design Flow, a defense-in-depth approach that can minimize overhead while maximizing security. Our EDA tool flow uses a dynamic obfuscation method that employs dynamic lockboxes, which include switch boxes and magnetic random access memory (MRAM)-based look-up tables (LUT) while offering minimal overhead and being flexible and resilient against modern SAT-based attacks and power side-channel attacks. An EDA tool flow for optimized lockbox insertion is also developed to generate SAT-resilient design netlists with the least power and area overhead. PPA metrics and security (SAT attack time) are provided to the designer for each lockbox insertion run. A verification methodology is provided to verify locked and unlocked designs for functional correctness. Finally, we use ISCAS’85 benchmarks to show that the EDA tool flow provides a secure hardware netlist with maximum security while considering power and area constraints. Our results indicate that the proposed OASIC design flow can maximize security while incurring less than 15% area overhead and maintaining a similar power footprint compared to the original design. OASIC design flow demonstrates improved performance as design size increases, which demonstrates the scalability of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Modern semiconductor manufacturing often leverages a fabless model in which design and fabrication are partitioned. This has led to a large body of work attempting to secure designs sent to an untrusted third party through obfuscation methods. On the other hand, efficient de-obfuscation attacks have been proposed, such as Boolean Satisfiability attacks (SAT attacks). However, there is a lack of frameworks to validate the security and functionality of obfuscated designs. Additionally, unconventional obfuscated design flows, which vary from one obfuscation to another, have been key impending factors in realizing logic locking as a mainstream approach for securing designs. In this work, we address these two issues for Lookup Table-based obfuscation. We study both Volatile and Non-volatile versions of LUT-based obfuscation and develop a framework to validate SAT runtime using machine learning. We can achieve unparallel SAT-resiliency using LUT-based obfuscation while incurring 7% area and less than 1% power overheads. Following this, we discuss and implement a validation flow for obfuscated designs. We then fabricate a chip consisting of several benchmark designs and a RISC-V CPU in TSMC 65nm for post functionality validation. We show that the design flow and SAT-runtime validation can easily integrate LUT-based obfuscation into existing CAD tools while adding minimal verification overhead. Finally, we justify SAT-resilient LUT-based obfuscation as a promising candidate for securing designs. 
    more » « less
  3. Maximizing profits while minimizing risk in a technologically advanced silicon industry has motivated the globalization of the fabrication process and electronic hardware supply chain. However, with the increasing magnitude of successful hardware attacks, the security of many hardware IPs has been compromised. Many existing security works have focused on resolving a single vulnerability while neglecting other threats. This motivated to propose a novel approach for securing hardware IPs during the fabrication process and supply chain via logic obfuscation by utilizing emerging spin-based devices. Our proposed dynamic obfuscation approach uses reconfigurable logic and interconnects blocks (RIL-Blocks), consisting of Magnetic Random Access Memory (MRAM)-based Look Up Tables and switch boxes flexibility and resiliency against state-of-the-art SAT-based attacks and power side-channel attacks while incurring a small overhead. The proposed Scan Enabled Obfuscation circuitry obfuscates the oracle circuit’s responses and further fortifies the logic and routing obfuscation provided by the RIL-Blocks, resembling a defense-in-depth approach. The empirical evaluation of security provided by the proposed RIL-Blocks on the ISCAS benchmark and common evaluation platform (CEP) circuit shows that resiliency comes with reduced overhead while providing resiliency to various hardware security threats. 
    more » « less
  4. In the last decades, emerging and re-emerging epidemics such as AIDS, measles, SARS, HINI influenza, and tuberculosis cause death to millions of people each year. In response, a large and intensive research is evolving for the design of better drugs and vaccines. However, studies warn that the new pandemics such as Coronavirus (COVID-19) and even deadly pandemics can emerge in the future. The existing confinement approaches rely on large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size fits all approach, which might not be effective. In contrast, we develop a game-theory inspired approach that considers societal and economic impacts and formulates the epidemic control as a non-zero sum dynamic game. Further, the proposed approach considers the demographic information leading to providing a tailored solution to each demography. We explore different strategies including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on economy. 
    more » « less