skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ratajczak, Zak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately mapping this process remains challenging. State-funded, publicly available high-resolution aerial imagery offers a potential solution, including the USDA’s National Agriculture Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON) Aerial Observation Platform (AOP). We evaluated the accuracy of land cover classification using NAIP, NEON, and both sources combined. We compared two machine learning models—support vector machines and random forests—implemented in R using large training and evaluation data sets. Our study site, Konza Prairie Biological Station, is a long-term experiment in which variable fire and grazing have created mosaics of herbaceous plants, shrubs, deciduous trees, and evergreen trees (Juniperus virginiana). All models achieved high overall accuracy (>90%), with NEON slightly outperforming NAIP. NAIP underperformed in detecting evergreen trees (52–78% vs. 83–86% accuracy with NEON). NEON models relied on LiDAR-based canopy height data, whereas NAIP relied on multispectral bands. Combining data from both platforms yielded the best results, with 97.7% overall accuracy. Vegetation indices contributed little to model accuracy, including NDVI (normalized digital vegetation index) and EVI (enhanced vegetation index). Both machine learning methods achieved similar accuracy. Our results demonstrate that free, high-resolution imagery and open-source tools can enable accurate, high-resolution, landscape-scale WPE monitoring. Broader adoption of such approaches could substantially improve the monitoring and management of grassland biodiversity, ecosystem function, ecosystem services, and environmental resilience. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Abstract In the Central Great Plains of North America, fire suppression is causing transitions from grasslands to shrublands and woodlands. This woody encroachment alters plant community composition, decreases grassland biodiversity, undermines key ecosystem services, and is difficult to reverse. How native grazers affect woody encroachment is largely unknown, especially compared to domesticated grazers. Bison were once the most widespread megafauna in North America and are typically categorized as grazers, with negative effects on grasses that indirectly benefit woody plants. However, bison can negatively impact woody plants through occasional browsing and mechanical disturbance. This study reports on a 30‐year experiment at Konza Prairie Biological Station, a mesic grassland in the Central Great Plains of North America, under fire suppression and experimental presence/absence of bison. Based on remote sensing, deciduous tree canopy cover was lower with bison (6% grazed vs. 16% ungrazed). Shrub land cover showed no difference (42% grazed vs. 41% ungrazed), while herbaceous land cover was higher with bison (51% grazed vs. 40% ungrazed). Evergreen tree canopy cover (Juniperus virginianaL.), which decreases biodiversity and increases wildfire risk, was approximately 0% with bison compared to 4% without bison. In the survival trial ofJ. virginianaseedlings, we found a 40% overwinter mortality with bison, compared to 5% mortality without bison. Compared to ungrazed areas, native plant species richness was 97% and 38% higher in bison‐grazed uplands and lowlands, respectively. Species evenness and Shannon's index were higher in the bison treatment in uplands, but not in lowlands. Bison affected community composition, resulting in higher cover of short grass species and lower tree cover. While grazers are generally assumed to favor woody plants, we found that bison had the opposite effect at low fire frequencies. We argue that the large size of bison and their behaviors account for this pattern, including trampling, horning, and occasional browsing. From a conservation perspective, bison might hamper tree expansion and increase plant diversity in tallgrass prairies and similar grasslands. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  4. Abstract Species interaction effects on populations can vary in both magnitude (i.e. strong vs. weak) and sign (positive, negative, or no effect). Context‐dependent effects of species interactions occur when the sign or strength of the interaction's effect on population growth rate changes across abiotic gradients.We know that species can vary substantially in the degree of context dependence they exhibit, even across similar abiotic gradients. However, few studies have characterised context dependence of co‐occurring species, limiting our ability to understand the implications of context dependence for species interaction effects on community composition.Using over three decades of data collected for 13 tallgrass prairie forbs at the Konza Prairie Biological Station, we parameterise density structured population models that predict population dynamics as functions of abiotic conditions and bison herbivory. We use these models to estimate the degree of context dependence in responses to bison herbivory for 13 species across three abiotic gradients: weather, fire frequency and soil type.All species showed significant context dependence for fire frequency in the same direction, though with variable magnitude, such that herbivory increased cover with more frequent fires. Context dependence with weather and soil type varied dramatically across species in both direction and magnitude. For example, herbivory effects on 3/13 species were stronger in wet conditions, but herbivory effects on 5/13 species were stronger in dry conditions. Thus, context dependence exhibited by individual species, as opposed to effects of abiotic conditions on the relative abundances of species, could generate much of the weather‐dependent effects of herbivory on community composition.Synthesis: Our work suggests that species can vary dramatically in the presence, direction and magnitude of context dependence, even when occurring in the same community and when considering the same species interaction (i.e. response to a herbivore). In addition, we find that context dependence could drive substantial variation in the effect of species interactions on community characteristics (e.g. composition) across multiple abiotic gradients. 
    more » « less
  5. Abstract Changes in climate and land management over the last half‐century have favoured woody plants native to grasslands and led to the rapid expansion of woody species. Despite this being a global phenomenon, it is unclear why some woody species have rapidly expanded while others have not. We assessed whether the most abundant woody encroaching species in tallgrass prairie have common growth forms and physiology or unique traits that differentiate their resource‐use strategies.We characterized the abundance, above‐ground carbon allocation, and leaf‐level physiological and structural traits of seven woody encroaching species in tallgrass prairie that span an order of magnitude in abundance. To identify species‐specific increases in abundance, we used a 34‐year species composition dataset at Konza Prairie Biological Station (Central Great Plains, USA). We then compared biomass allocation and leaf‐level traits to determine differences in carbon and water use strategies among species.While all focal species increased in abundance over time, encroachment in this system is primarily driven by three species:Cornus drummondii,Prunus americanaandRhus glabra. The most dominant species,Cornus drummondii, had the most extreme values for several traits, including the lowest leaf:stem mass ratios, lowest photosynthetic capacity and highest turgor loss point.Two of the most abundant species,Cornus drummondiiandRhus glabra, had opposing growth forms and resource‐use strategies. These species had significantly different above‐ground carbon allocation, leaf‐level drought tolerance and photosynthetic capacity. There were surprisingly few interspecific differences in specific leaf area and leaf dry matter content, suggesting these traits were poor predictors of species‐level encroachment.Synthesis. Woody encroaching species in tallgrass prairie encompass a spectrum of growth forms and leaf physiology. Two of the most abundant woody species fell at opposite ends of this spectrum. Our results suggest niche differences among a community of woody species facilitate the rapid encroachment by a few species. This study shows that woody encroaching species do not conform to a ‘one‐size‐fits‐all’ strategy, and a diversity of growth forms and physiological strategies may make it more challenging to reach management goals that aim to conserve or restore grassland communities. 
    more » « less
  6. Abstract Animals must track resources over relatively fine spatial and temporal scales, particularly in disturbance‐mediated systems like grasslands. Grassland birds respond to habitat heterogeneity by dispersing among sites within and between years, yet we know little about how they make post‐dispersal settlement decisions. Many methods exist to quantify the resource selection of mobile taxa, but the habitat data used in these models are frequently not collected at the same location or time that individuals were present. This spatiotemporal misalignment may lead to incorrect interpretations and adverse conservation outcomes, particularly in dynamic systems. To investigate the extent to which spatially and temporally dynamic vegetation conditions and topography drive grassland bird settlement decisions, we integrated multiple data sources from our study site to predict slope, vegetation height, and multiple metrics of vegetation cover at any point in space and time within the temporal and spatial scope of our study. We paired these predictions with avian mark‐resight data for 8 years at the Konza Prairie Biological Station in NE Kansas to evaluate territory selection for Grasshopper Sparrows (Ammodramus savannarum), Dickcissels (Spiza americana), and Eastern Meadowlarks (Sturnella magna). Each species selected different types and amounts of herbaceous vegetation cover, but all three species preferred relatively flat areas with less than 6% shrub cover and less than 1% tree cover. We evaluated several scenarios of woody vegetation removal and found that, with a targeted approach, the simulated removal of just one isolated tree in the uplands created up to 14 ha of grassland bird habitat. This study supports growing evidence that small amounts of woody encroachment can fragment landscapes, augmenting conservation threats to grassland systems. Conversely, these results demonstrate that drastic increases in bird habitat area could be achieved through relatively efficient management interventions. The results and approaches reported pave the way for more efficient conservation efforts in grasslands and other systems through spatiotemporal alignment of habitat with animal behaviors and simulated impacts of management interventions. 
    more » « less
  7. The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison ( Bison bison ) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle ( Bos taurus ). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m 2 ) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change. 
    more » « less