skip to main content


Search for: All records

Creators/Authors contains: "Reddi, Vijay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 27, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. A design paradigm for the future of intelligent sensors.

     
    more » « less
  4. Assessing the environmental impacts of machine learning on microcontrollers.

     
    more » « less
  5. Autonomous systems, such as Unmanned Aerial Vehicles (UAVs), are expected to run complex reinforcement learning (RL) models to execute fully autonomous positionnavigation-time tasks within stringent onboard weight and power constraints. We observe that reducing onboard operating voltage can benefit the energy efficiency of both the computation and flight mission, however, it can also result in on-chip bit failures that are detrimental to mission safety and performance. To this end, we propose BERRY, a robust learning framework to improve bit error robustness and energy efficiency for RL-enabled autonomous systems. BERRY supports robust learning, both offline and on-board the UAV, and for the first time, demonstrates the practicality of robust low-voltage operation on UAVs that leads to high energy savings in both compute-level operation and systemlevel quality-of-flight. We perform extensive experiments on 72 autonomous navigation scenarios and demonstrate that BERRY generalizes well across environments, UAVs, autonomy policies, operating voltages and fault patterns, and consistently improves robustness, efficiency and mission performance, achieving up to 15.62% reduction in flight energy, 18.51% increase in the number of successful missions, and 3.43× processing energy reduction. 
    more » « less
  6. null (Ed.)
    We show that aggregated model updates in federated learning may be insecure. An untrusted central server may disaggregate user updates from sums of updates across participants given repeated observations, enabling the server to recover privileged information about individual users’ private training data via traditional gradient inference attacks. Our method revolves around reconstructing participant information (e.g: which rounds of training users participated in) from aggregated model updates by leveraging summary information from device analytics commonly used to monitor, debug, and manage federated learning systems. Our attack is parallelizable and we successfully disaggregate user updates on settings with up to thousands of participants. We quantitatively and qualitatively demonstrate significant improvements in the capability of various inference attacks on the disaggregated updates. Our attack enables the attribution of learned properties to individual users, violating anonymity, and shows that a determined central server may undermine the secure aggregation protocol to break individual users’ data privacy in federated learning. 
    more » « less
  7. null (Ed.)