skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Reich, Daniel H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many soft and biological materials display so-called ‘soft glassy’ dynamics; their constituents undergo anomalous random motions and complex cooperative rearrangements. A recent simulation model of one soft glassy material, a coarsening foam, suggested that the random motions of its bubbles are due to the system configuration moving over a fractal energy landscape in high-dimensional space. Here we show that the salient geometrical features of such high-dimensional fractal landscapes can be explored and reliably quantified, using empirical trajectory data from many degrees of freedom, in a model-free manner. For a mayonnaise-like dense emulsion, analysis of the observed trajectories of oil droplets quantitatively reproduces the high-dimensional fractal geometry of the configuration path and its associated local energy minima generated using a computational model. That geometry in turn drives the droplets’ complex random motion observed in real space. Our results indicate that experimental studies can elucidate whether the similar dynamics in different soft and biological materials may also be due to fractal landscape dynamics. 
    more » « less
  2. The mechanical behavior of soft collagenous tissues is largely influenced by the reinforcing collagen fiber microstructure. The anisotropic collagen microstructure can remodel in response to changes in mechanical loading, which can dramatically alter the mechanical properties of the tissues and the mechanical environment of the resident cells. It is important to study the remodeling mechanisms of collagen tissues to understand the pathophysiology of various connective tissue diseases. We hypothesize that the collagen structure actively changes in response to mechanical stimuli through concurrent processes of collagen deposition and degradation and that the rates of these processes are altered by collagen mechanochemistry, mechanosensitive collagen production, and cellular contraction. In prior studies, we developed micromechanical models of collagen tissues to investigate the role of collagen mechanochemistry and mechanosensitive collagen production in remodeling the collagen fiber structure and tissue growth.[1,2] We found that stress inhibition of enzymatic degradation and stimulation of collagen production can explain many phenomena, including remodeling the anisotropic collagen structure along the directions of the maximum principal stress and the development of stress homeostasis. The goal of this study is to investigate the effect of mechanical loading on the active behavior of the cells. Our approach uses a model 3D microtissue systems, self-assembled on a magnetically actuated two-pillar system (µTUG), to investigate these cell-collagen interactions and effects of mechanical loading. The micropillar support allows for measurement of the active cellular contraction, while the magnetic tweezer allows for mechanical testing of the microtissue under a controlled stress rate. Digital image analysis is applied to measure the local two-dimensional (2D) strain field. To analyze the mechanical measurements for mechanical properties of the collagen structure and active behavior of the cells, we developed a micromechanical model for the mechanical behavior of the microtissue. The micromechanical model includes the elastic behavior of the anisotropic collagen structure and the anisotropic active behavior of the cells. To describe mechanosensitive cellular contraction, we assume concurrent polymerization/depolymerization of actin filaments, where the polymerization rate increases with the fiber stress. In this paper, we will briefly summarize the model and describe an initial model validation by comparing to µTUG experiments measuring the stress-strain behavior of the microtissue to load-unload tests. 
    more » « less
  3. Abstract

    The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells’ actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes—intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa–17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.

     
    more » « less
  4. Abstract

    The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethylsiloxane) (PDMS) microposts with magnetic nanowires embedded in a subset of microposts to enable actuation of those posts via an externally applied magnetic field. Techniques are described to track the magnetic microposts’ motion with nanometer precision at up to 100 video frames per second to measure the local cellular rheology at well‐defined positions. Application of these high‐precision tracking techniques to the full array of microposts in contact with a cell also enables mapping of the cytoskeletal mechanical fluctuation dynamics with high spatial and temporal resolution. This article describes (1) the fabrication of magnetic micropost arrays, (2) measurement protocols for both local rheology and cytoskeletal force fluctuation mapping, and (3) special‐purpose software routines to reduce and analyze these data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

    Basic Protocol 1: Fabrication of magnetic micropost arrays

    Basic Protocol 2: Data acquisition for cellular force fluctuations on non‐magnetic micropost arrays

    Basic Protocol 3: Data acquisition for local cellular rheology measurements with magnetic microposts

    Basic Protocol 4: Data reduction: determining microposts’ motion

    Basic Protocol 5: Data analysis: determining local rheology from magnetic microposts

    Basic Protocol 6: Data analysis for force fluctuation measurements

    Support Protocol 1: Fabrication of magnetic Ni nanowires by electrodeposition

    Support Protocol 2: Configuring Streampix for magnetic rheology measurements

     
    more » « less
  5. Abstract

    The strong and counterproductive interrelationship of thermoelectric parameters remains a bottleneck to improving thermoelectric performance, especially in polymer‐based materials. In this paper, a compositional range is investigated over which there is decoupling of the electrical conductivity and Seebeck coefficient, achieving increases in at least one of these two parameters while the other is maintained or slightly increased as well. This is done using an alkylthio‐substituted polythiophene (PQTS12) as additive in poly(bisdodecylquaterthiophene) (PQT12) with tetrafluorotetracyanoquinodimethane (F4TCNQ) and nitrosyl tetrafluoroborate (NOBF4) as dopants. The power factor increases two orders of magnitude with the PQTS12 additive at constant doping level. Using a second pair of polymers, poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTTC12) and poly(2,5‐bis(3‐dodecylthiothiophen‐2‐yl)thieno[3,2‐b]thiophene, (PBTTTSC12), with higher mobilities, decoupling of the Seebeck coefficient and electrical conductivity is also observed and higher power factor is achieved. Distinguished from recently reported works, these two sets of polymers possess very closely offset carrier energy levels (0.05–0.07 eV), and the microstructure, assessed using grazing incidence X‐ray scattering, and mobility evaluated in field‐effect transistors, are not adversely affected by the blending. Experiments, calculations, and simulations are consistent with the idea that blending and doping polymers with closely spaced energy levels and compatible morphologies to promote carrier mobility favors increased power factors.

     
    more » « less