Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The study of fairness in multiwinner elections focuses on settings where candidates have attributes. However, voters may also be divided into predefined populations under one or more attributes. The models that focus on candidate attributes alone may systematically under-represent smaller voter populations. Hence, we develop a model, DiRe Committee Winner Determination (DRCWD), which delineates candidate and voter attributes to select a committee by specifying diversity and representation constraints and a voting rule. We analyze its computational complexity and develop a heuristic algorithm, which finds the winning DiRe committee in under two minutes on 63% of the instances of synthetic datasets and on 100% of instances of real-world datasets. We also present an empirical analysis of feasibility and utility traded-off. Moreover, even when the attributes of candidates and voters coincide, it is important to treat them separately as diversity does not imply representation and vice versa. This is to say that having a female candidate on the committee, for example, is different from having a candidate on the committee who is preferred by the female voters, and who themselves may or may not be female.more » « less
-
We investigate the practical aspects of computing the necessary and possible winners in elections over incomplete voter preferences. In the case of the necessary winners, we show how to implement and accelerate the polynomial-time algorithm of Xia and Conitzer. In the case of the possible winners, where the problem is NP-hard, we give a natural reduction to Integer Linear Programming (ILP) for all positional scoring rules and implement it in a leading commercial optimization solver. Further, we devise optimization techniques to minimize the number of ILP executions and, oftentimes, avoid them altogether. We conduct a thorough experimental study that includes the construction of a rich benchmark of election data based on real and synthetic data. Our findings suggest that, the worst-case intractability of the possible winners notwithstanding, the algorithmic techniques presented here scale well and can be used to compute the possible winners in realistic scenarios.more » « less