- PAR ID:
- 10377583
- Date Published:
- Journal Name:
- Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI)
- Page Range / eLocation ID:
- 5143 to 5149
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)A boardroom election is an election with a small number of voters carried out with public communications. We present BVOT, a self-tallying boardroom voting protocol with ballot secrecy, fairness (no tally information is available before the polls close), and dispute-freeness (voters can observe that all voters correctly followed the protocol). BVOT works by using a multiparty threshold homomorphic encryption system in which each candidate is associated with a set of masked primes. Each voter engages in an oblivious transfer with an untrusted distributor: the voter selects the index of a prime associated with a candidate and receives the selected prime in masked form. The voter then casts their vote by encrypting their masked prime and broadcasting it to everyone. The distributor does not learn the voter's choice, and no one learns the mapping between primes and candidates until the audit phase. By hiding the mapping between primes and candidates, BVOT provides voters with insufficient information to carry out effective cheating. The threshold feature prevents anyone from computing any partial tally---until everyone has voted. Multiplying all votes, their decryption shares, and the unmasking factor yields a product of the primes each raised to the number of votes received. In contrast to some existing boardroom voting protocols, BVOT does not rely on any zero-knowledge proof; instead, it uses oblivious transfer to assure ballot secrecy and correct vote casting. Also, BVOT can handle multiple candidates in one election. BVOT prevents cheating by hiding crucial information: an attempt to increase the tally of one candidate might increase the tally of another candidate. After all votes are cast, any party can tally the votes.more » « less
-
It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare that the candidates having the best chance of winning are the (co-)winners. We refer to this interpretation as the Most Probable Winner (MPW). In this paper, we focus on elections that use positional scoring rules, and propose an alternative winner interpretation, the Most Expected Winner (MEW), according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.more » « less
-
In social choice, traditional Kemeny rank aggregation combines the preferences of voters, expressed as rankings, into a single consensus ranking without consideration for how this ranking may unfairly affect marginalized groups (i.e., racial or gender). Developing fair rank aggregation methods is critical due to their societal influence in applications prioritizing job applicants, funding proposals, and scheduling medical patients. In this work, we introduce the Fair Exposure Kemeny Aggregation Problem (FairExp-kap) for combining vast and diverse voter preferences into a single ranking that is not only a suitable consensus, but ensures opportunities are not withheld from marginalized groups. In formalizing FairExp-kap, we extend the fairness of exposure notion from information retrieval to the rank aggregation context and present a complimentary metric for voter preference representation. We design algorithms for solving FairExp-kap that explicitly account for position bias, a common ranking-based concern that end-users pay more attention to higher ranked candidates. epik solves FairExp-kap exactly by incorporating non-pairwise fairness of exposure into the pairwise Kemeny optimization; while the approximate epira is a candidate swapping algorithm, that guarantees ranked candidate fairness. Utilizing comprehensive synthetic simulations and six real-world datasets, we show the efficacy of our approach illustrating that we succeed in mitigating disparate group exposure unfairness in consensus rankings, while maximally representing voter preferences.more » « less
-
It remains an open question how to determine the winner of an election when voter preferences are incomplete or uncertain. One option is to assume some probability space over the voting profile and select the Most Probable Winner (MPW) -- the candidate or candidates with the best chance of winning. In this paper, we propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the expected performance of the candidates.
We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.
-
We revisit the effect of ballot access laws on voter confidence in the outcome of elections. Previous research found weak or no relationship between voter confidence and election laws regulating ballot access. We argue this non-finding is conditioned by partisanship. Democrats and Republicans view election laws through a partisan lens, which is especially triggered when coalitions lose. Republican voters see ballot restrictions as a means of securing the vote against fraud; Democratic voters see ballot restrictions as voter suppression. We maintain that the conditional partisan effect that election laws have on voter confidence is triggered or attenuated when partisans’ candidates lose elections. We find that in states where ballot access is costly, voter confidence among partisans and supporters of the losing Presidential candidate is significantly higher for Republicans and significantly lower for Democrats than their counterparts in states with less costly ballot access laws. These effects are greater for Republican than Democrats. We discuss the implications of our findings on election ecosystems and voter confidence.