skip to main content

Search for: All records

Creators/Authors contains: "Ren, Jianning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result inwidespread tree mortality, transforming forest structure within watersheds.While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak watermore »yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance.« less
  4. Abstract

    Extreme wildfires are increasing in frequency globally, prompting new efforts to mitigate risk. The ecological appropriateness of risk mitigation strategies, however, depends on what factors are driving these increases. While regional syntheses attribute increases in fire activity to both climate change and fuel accumulation through fire exclusion, they have not disaggregated causal drivers at scales where land management is implemented. Recent advances in fire regime modeling can help us understand which drivers dominate at management-relevant scales. We conducted fire regime simulations using historical climate and fire exclusion scenarios across two watersheds in the Inland Northwestern U.S., which occur at different positions along an aridity continuum. In one watershed, climate change was the key driver increasing burn probability and the frequency of large fires; in the other, fire exclusion dominated in some locations. We also demonstrate that some areas become more fuel-limited as fire-season aridity increases due to climate change. Thus, even within watersheds, fuel management must be spatially and temporally explicit to optimize effectiveness. To guide management, we show that spatial estimates of soil aridity (or temporally averaged soil moisture) can provide a relatively simple, first-order indicator of where in a watershed fire regime is climate vs. fuel-limited andmore »where fire regimes are most vulnerable to change.

    « less