skip to main content


Search for: All records

Creators/Authors contains: "Riad, ABM"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large Language Models (LLMs) have extensive ability to produce promising output. Nowadays, people are increasingly relying on them due to easy accessibility, rapid and outstanding outcomes. However, the use of these results without appropriate scrutiny poses serious security risks, particularly when they are integrated with other software, APIs, or plugins. This is because the LLM outputs are highly dependent on the prompts they receive. Therefore, it is essential to carefully clean these outputs before using them in additional software environments. This paper is designed to teach students about the potential dangers of contaminated LLM output within the context of web development through prelab, handson, and postlab experiences. Hands-on lab provides practical guidance on how to handle LLM vulnerabilities to make applications safe with some real-world examples in Python. This approach aims to provide students with a deeper understanding of the precautions necessary to ensure software against the vulnerabilities introduced by LLM output. 
    more » « less
    Free, publicly-accessible full text available July 2, 2025
  2. Large Language Models (LLMs) have extensive ability to produce promising output. Nowadays, people are increasingly relying on them due to easy accessibility, rapid and outstanding outcomes. However, the use of these results without appropriate scrutiny poses serious security risks, particularly when they are integrated with other software, APIs, or plugins. This is because the LLM outputs are highly dependent on the prompts they receive. Therefore, it is essential to carefully clean these outputs before using them in additional software environments. This paper is designed to teach students about the potential dangers of contaminated LLM output within the context of web development through prelab, handson, and postlab experiences. Hands-on lab provides practical guidance on how to handle LLM vulnerabilities to make applications safe with some real-world examples in Python. This approach aims to provide students with a deeper understanding of the precautions necessary to ensure software against the vulnerabilities introduced by LLM output. 
    more » « less
    Free, publicly-accessible full text available July 2, 2025
  3. Free, publicly-accessible full text available July 2, 2025
  4. Free, publicly-accessible full text available July 2, 2025
  5. Free, publicly-accessible full text available July 2, 2025