skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alali, Fatma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to 2.41 × 10 20 protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process K π + S ( μ μ ) , for a LLP S . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Garisto, R (Ed.)
    The ratios of branching fractions R(D*)= B(B0 --> D*+tau- nu(bar))/ B(B0--> D*+mu- nu(bar)) and R(D)= B(B0 --> D0tau- nu(bar))/ B(B0 --> D0mu- nu(bar)) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ− → μ−ντν¯μ. The measured values are R*D*)= 0.281+/- 0.018+/- 0.024 and R(D0)=0.441+/- 0.060+/- 0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ= −0.43. The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard model 
    more » « less
  3. A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model. 
    more » « less
  4. A bstract A search for the lepton-flavour violating decays B 0 → K *0 μ ± e ∓ and $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ is presented, using proton-proton collision data collected by the LHCb detector at the LHC, corresponding to an integrated luminosity of 9 fb − 1 . No significant signals are observed and upper limits of $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{+}{e}^{-}\right)<5.7\times {10}^{-9}\left(6.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{-}{e}^{+}\right)<6.8\times {10}^{-9}\left(7.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{\pm }{e}^{\mp}\right)<10.1\times {10}^{-9}\left(11.7\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}_s^0\to \phi {\mu}^{\pm }{e}^{\mp}\right)<16.0\times {10}^{-9}\left(19.8\times {10}^{-9}\right)\end{array}} $$ B B 0 → K ∗ 0 μ + e − < 5.7 × 10 − 9 6.9 × 10 − 9 , B B 0 → K ∗ 0 μ − e + < 6.8 × 10 − 9 7.9 × 10 − 9 , B B 0 → K ∗ 0 μ ± e ∓ < 10.1 × 10 − 9 11.7 × 10 − 9 , B B s 0 → ϕ μ ± e ∓ < 16.0 × 10 − 9 19.8 × 10 − 9 are set at 90% (95%) confidence level. These results constitute the world’s most stringent limits to date, with the limit on the decay $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ the first being set. In addition, limits are reported for scalar and left-handed lepton-flavour violating New Physics scenarios. 
    more » « less