skip to main content


Search for: All records

Creators/Authors contains: "Richa, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 26, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Doty, David ; Spirakis, Paul (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  4. Throughput is a main performance objective in communication networks. This paper considers a fundamental maximum throughput routing problem-the all-or-nothing multicommodity flow (ANF) problem - in arbitrary directed graphs and in the practically relevant but challenging setting where demands can be (much) larger than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an admission control mechanism is required which prevents overloading the network when routing commodities.

     
    more » « less
  5. We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation and integration in self-organizing particle systems, an abstraction of programmable matter. Such systems are composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational power. We consider heterogeneous particle systems of two different colors and prove that these systems can collectively separate into different color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single global parameter determining whether particles prefer to be next to other particles of the same color or not; this parameter is meant to represent external, environmental influences on the particle system. The algorithm is a generalization of a previous distributed, stochastic algorithm for compression (PODC '16), which can be viewed as a special case of separation where all particles have the same color. It is significantly more challenging to prove that the desired behavior is achieved in the heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining several new techniques, including the cluster expansion from statistical physics, a new variant of the bridging argument of Miracle, Pascoe and Randall (RANDOM '11), the high-temperature expansion of the Ising model, and careful probabilistic arguments. 
    more » « less
  6. This is a chapter in Book "Distributed Computing by Mobile Entities: Current Research in Moving and Computing", Springer Nature. The vision for programmable matter is to realize a physical substance that is scalable, versatile, instantly reconfigurable, safe to handle, and robust to failures. Programmable matter could be deployed in a variety of domain spaces to address a wide gamut of problems, including applications in construction, environmental science, synthetic biology, and space exploration. However, there are considerable engineering and computational challenges that must be overcome before such a system could be implemented. Towards developing efficient algorithms for novel programmable matter behaviors, the amoebot model for self-organizing particle systems and its variant, hybrid programmable matter, provide formal computational frameworks that facilitate rigorous algorithmic research. In this chapter, we discuss distributed algorithms under these models for shape formation, shape recognition, object coating, compression, shortcut bridging, and separation in addition to some underlying algorithmic primitives. 
    more » « less