skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ritchie, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding bimanual human hand activities is a critical problem in AI and robotics. We cannot build large models of bimanual activities because existing datasets lack the scale, coverage of diverse hand activities, and detailed annotations. We introduce GigaHands, a massive annotated dataset capturing 34 hours of bimanual hand activities from 56 subjects and 417 objects, totaling 14k motion clips derived from 183 million frames paired with 84k text annotations. Our markerless capture setup and data acquisition protocol enable fully automatic 3D hand and object estimation while minimizing the effort required for text annotation. The scale and diversity of GigaHands enable broad applications, including text-driven action synthesis, hand motion captioning, and dynamic radiance field reconstruction. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  2. We design a system that learns how to edit visual programs. Our edit network consumes a complete input program and a visual target. From this input, we task our network with predicting a local edit operation that could be applied to the input program to improve its similarity to the target. In order to apply this scheme for domains that lack program annotations, we develop a self-supervised learning approach that integrates this edit network into a bootstrapped finetuning loop along with a network that predicts entire programs in one-shot. Our joint finetuning scheme, when coupled with an inference procedure that initializes a population from the one-shot model and evolves members of this population with the edit network, helps to infer more accurate visual programs. Over multiple domains, we experimentally compare our method against the alternative of using only the one-shot model, and find that even under equal search-time budgets, our editing-based paradigm provides significant advantages. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. The ability to edit 3D assets with natural language presents a compelling paradigm to aid in the democratization of 3D content creation. However, while natural language is often effective at communicating general intent, it is poorly suited for specifying exact manipulation. To address this gap, we introduce ParSEL, a system that enablescontrollableediting of high-quality 3D assets with natural language. Given a segmented 3D mesh and an editing request, ParSEL produces aparameterizedediting program. Adjusting these parameters allows users to explore shape variations with exact control over the magnitude of the edits. To infer editing programs which align with an input edit request, we leverage the abilities of large-language models (LLMs). However, we find that although LLMs excel at identifying the initial edit operations, they often fail to infer complete editing programs, resulting in outputs that violate shape semantics. To overcome this issue, we introduce Analytical Edit Propagation (AEP), an algorithm which extends a seed edit with additional operations until a complete editing program has been formed. Unlike prior methods, AEP searches for analytical editing operations compatible with a range of possible user edits through the integration of computer algebra systems for geometric analysis. Experimentally, we demonstrate ParSEL's effectiveness in enabling controllable editing of 3D objects through natural language requests over alternative system designs. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. People grasp flexible visual concepts from a few examples. We explore a neurosymbolic system that learns how to infer programs that capture visual concepts in a domain-general fashion. We introduce Template Programs: programmatic expressions from a domain-specific language that specify structural and parametric patterns common to an input concept. Our framework supports multiple concept-related tasks, including few-shot generation and co-segmentation through parsing. We develop a learning paradigm that allows us to train networks that infer Template Programs directly from visual datasets that contain concept groupings. We run experiments across multiple visual domains: 2D layouts, Omniglot characters, and 3D shapes. We find that our method outperforms task-specific alternatives, and performs competitively against domain-specific approaches for the limited domains where they exist. 
    more » « less
    Free, publicly-accessible full text available July 21, 2025
  6. Free, publicly-accessible full text available August 1, 2025
  7. Procedural noise is a fundamental component of computer graphics pipelines, offering a flexible way to generate textures that exhibit natural random variation. Many different types of noise exist, each produced by a separate algorithm. In this paper, we present a single generative model which can learn to generate multiple types of noise as well as blend between them. In addition, it is capable of producing spatially-varying noise blends despite not having access to such data for training. These features are enabled by training a denoising diffusion model using a novel combination of data augmentation and network conditioning techniques. Like procedural noise generators, the model's behavior is controllable via interpretable parameters plus a source of randomness. We use our model to produce a variety of visually compelling noise textures. We also present an application of our model to improving inverse procedural material design; using our model in place of fixed-type noise nodes in a procedural material graph results in higher-fidelity material reconstructions without needing to know the type of noise in advance. Open-sourced materials can be found at https://armanmaesumi.github.io/onenoise/ 
    more » « less
    Free, publicly-accessible full text available July 19, 2025
  8. Motion graphics videos are widely used in Web design, digital advertising, animated logos and film title sequences, to capture a viewer's attention. But editing such video is challenging because the video provides a low-level sequence of pixels and frames rather than higher-level structure such as the objects in the video with their corresponding motions and occlusions. We present amotion vectorizationpipeline for converting motion graphics video into an SVG motion program that provides such structure. The resulting SVG program can be rendered using any SVG renderer (e.g. most Web browsers) and edited using any SVG editor. We also introduce aprogram transformationAPI that facilitates editing of a SVG motion program to create variations that adjust the timing, motions and/or appearances of objects. We show how the API can be used to create a variety of effects including retiming object motion to match a music beat, adding motion textures to objects, and collision preserving appearance changes. 
    more » « less
  9. We introduce ShapeCoder, the first system capable of taking a dataset of shapes, represented with unstructured primitives, and jointly discovering (i) usefulabstractionfunctions and (ii) programs that use these abstractions to explain the input shapes. The discovered abstractions capture common patterns (both structural and parametric) across a dataset, so that programs rewritten with these abstractions are more compact, and suppress spurious degrees of freedom. ShapeCoder improves upon previous abstraction discovery methods, finding better abstractions, for more complex inputs, under less stringent input assumptions. This is principally made possible by two methodological advancements: (a) a shape-to-program recognition network that learns to solve sub-problems and (b) the use of e-graphs, augmented with a conditional rewrite scheme, to determine when abstractions with complex parametric expressions can be applied, in a tractable manner. We evaluate ShapeCoder on multiple datasets of 3D shapes, where primitive decompositions are either parsed from manual annotations or produced by an unsupervised cuboid abstraction method. In all domains, ShapeCoder discovers a library of abstractions that captures high-level relationships, removes extraneous degrees of freedom, and achieves better dataset compression compared with alternative approaches. Finally, we investigate how programs rewritten to use discovered abstractions prove useful for downstream tasks. 
    more » « less