skip to main content


Search for: All records

Creators/Authors contains: "Robelle, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ahn, Hee-Kap ; Sadakane, Kunihiko (Ed.)
    A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ≤^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ≤^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP). 
    more » « less
  2. null (Ed.)
    Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer k, every n-node graph has a (2k – 1)-spanner on O(f^{1–1/k} n^{1+1/k}) edges resilient to f vertex faults, and there are examples of input graphs on which this bound cannot be improved. However, these proofs work by analyzing the output spanner of a certain exponential-time greedy algorithm. In this work, we give the first algorithm that produces vertex fault tolerant spanners of optimal size and which runs in polynomial time. Specifically, we give a randomized algorithm which takes Õ(f^{1–1/k} n^{2+1/k} + mf2) time. We also derandomize our algorithm to give a deterministic algorithm with similar bounds. This reflects an exponential improvement in runtime over [Bodwin-Patel PODC '19], the only previously known algorithm for constructing optimal vertex fault-tolerant spanners. 
    more » « less
  3. null (Ed.)