skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robinson, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 26, 2026
  2. Computing systems are consuming an increasing and unsustainable fraction of society’s energy footprint, notably in data centers. Meanwhile, energy-efficient software engineering techniques are often absent from undergraduate curricula. We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class. There is one major problem with such an endeavor: undergraduate curricula have limited space for mastering energy-related systems programming aspects. To address this problem, we propose to leverage the domain expertise afforded by large language models (LLMs). In our preliminary studies, we observe that LLMs can generate energy-efficient variations of basic linear algebra codes tailored to both ARM64 and AMD64 architectures, as well as unit tests and energy measurement harnesses. On toy examples suitable for classroom use, this approach reduces energy expenditure by 30–90%. These initial experiences give rise to our vision of LLM-based metacompilers as a tool for students to transform high-level algorithms into efficient, hardware-specific implementations. Complementing this tooling, we will incorporate systems thinking concepts into the learning module so that students can reason both locally and globally about the effects of energy optimizations. 
    more » « less
  3. The primary theory of software engineering is that an organiza- tion’s Policies and Processes influence the quality of its Products. We call this the PPP Theory. Although empirical software engineer- ing research has grown common, it is unclear whether researchers are trying to evaluate the PPP Theory. To assess this, we analyzed half (33) of the empirical works published over the last two years in three prominent software engineering conferences. In this sample, 70% focus on policies/processes or products, not both. Only 33% provided measurements relating policy/process and products. We make four recommendations: (1) Use PPP Theory in study design; (2) Study feedback relationships; (3) Diversify the studied feed- forward relationships; and (4) Disentangle policy and process. Let us remember that research results are in the context of, and with respect to, the relationship between software products, processes, and policies. 
    more » « less