skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rokni, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Color Doppler twinkling on kidney stones and other pathological mineralizations is theorized to arise from stable microbubbles, which suggests twinkling will be sensitive to ambient gas. Here, lab-grown cholesterol, calcium phosphate, and uric acid crystals were imaged with ultrasound in water while varying oxygen, carbon dioxide, and nitrogen levels. Twinkling was found to increase on cholesterol in elevated oxygen, cholesterol and calcium phosphate in elevated carbon dioxide, and no crystals in elevated nitrogen. These results support the crevice microbubble theory of twinkling and suggest gases may be varied to enhance twinkling on some mineralizations. 
    more » « less
  2. Abstract Objective.Pathological mineralizations form throughout the body and can be difficult to detect using conventional imaging methods. Color Doppler ultrasound twinkling highlights ∼60% of kidney stones with a rapid color shift and is theorized to arise from crevice microbubbles as twinkling disappears on kidney stones at elevated pressures and scratched acrylic balls in ethanol. Twinkling also sometimes appears on other pathological mineralizations; however, it is unclear whether the etiology of twinkling is the same as for kidney stones.Approach.In this study, five cholesterol, calcium phosphate, and uric acid crystals were grownin vitroand imaged in Doppler mode with a research ultrasound system and L7-4 transducer in water. To evaluate the influence of pressure on twinkling, the same crystals were imaged in a high-pressure chamber. Then, the effect of surface tension on twinkling was evaluated by imaging crystals in different concentrations of surfactant (1%, 2%, 3%, 4%) and ethanol (10%, 30%, 50%, 70%), artificial urine, bovine blood, and a tissue-mimicking phantom.Main results. Results showed that all crystals twinkled in water, with cholesterol twinkling significantly more than calcium phosphate and uric acid. When the ambient pressure was increased, twinkling disappeared for all tested crystals when pressures reached 7 MPa (absolute) and reappeared when returned to ambient pressure (0.1 MPa). Similarly, twinkling across all crystals decreased with surface tension when imaged in the surfactant and ethanol (statistically significant when surface tension <22 mN m−1) and decreased in blood (surface tension = 52.7 mN m−1) but was unaffected by artificial urine (similar surface tension to water). In the tissue-mimicking phantom, twinkling increased for cholesterol and calcium phosphate crystals with no change observed in uric acid crystals.Significance.Overall, these results support the theory that bubbles are present on crystals and cause twinkling, which could be leveraged to improve twinkling for the detection of other pathological mineralizations. 
    more » « less
  3. Abstract Deep vein thrombosis (DVT) is a life‐threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen‐mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast‐enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet‐bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast‐enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet–fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image‐guided, non‐invasive, interventions for DVT and other vascular diseases. 
    more » « less