Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Studying the retreat of the Patagonian Ice Sheet (PIS) during the last deglaciation represents an important opportunity to understand how ice sheets outside the polar regions have responded to deglacial changes in temperature and large-scale atmospheric circulation. At the northernmost extension of the PIS during the Last Glacial Maximum (LGM), the Chilean Lake District (CLD) was influenced by the southern westerly winds (SWW), which strongly modulated the hydrologic and heat budgets of the region. Despite progress in constraining the nature and timing of deglacial ice retreat across this area, considerable uncertainty in the glacial history still exists due to a lack of geologic constraints on past ice margin change. Where the glacial chronology is lacking, ice sheet models can provide important insight into our understanding of the characteristics and drivers of deglacial ice retreat. Here we apply the Ice Sheet and Sea-level System Model (ISSM) to simulate the LGM and last deglacial ice history of the PIS across the CLD at high spatial resolution (450 m). We present a transient simulation of ice margin change across the last deglaciation using climate inputs from the National Center for Atmospheric Research Community Climate System Model (CCSM3) Trace-21ka experiment. At the LGM, the simulated ice extent across the CLD agrees well with the most comprehensive reconstruction of PIS ice history (PATICE). Coincident with deglacial warming, ice retreat ensues after 19 ka, with large-scale ice retreat occurring across the CLD between 18 and 16.5 ka. By 17 ka, the northern portion of the CLD becomes ice free, and by 15 ka, ice only persists at high elevations as mountain glaciers and small ice caps. Our simulated ice history agrees well with PATICE for early deglacial ice retreat but diverges at and after 15 ka, where the geologic reconstruction suggests the persistence of an ice cap across the southern CLD until 10 ka. However, given the high uncertainty in the geologic reconstruction of the PIS across the CLD during the later deglaciation, this work emphasizes a need for improved geologic constraints on past ice margin change. While deglacial warming drove the ice retreat across this region, sensitivity tests reveal that modest variations in wintertime precipitation (∼10 %) can modulate the pacing of ice retreat by up to 2 ka, which has implications when comparing simulated outputs of ice margin change to geologic reconstructions. While we find that TraCE-21ka simulates large-scale changes in the SWW across the CLD that are consistent with regional paleoclimate reconstructions, the magnitude of the simulated precipitation changes is smaller than what is found in proxy records. From our sensitivity analysis, we can deduce that larger anomalies in precipitation, as found in paleoclimate proxies, may have had a large impact on modulating the magnitude and timing of deglacial ice retreat. This fact highlights an additional need for better constraints on the deglacial change in strength, position, and extent of the SWW as it relates to understanding the drivers of deglacial PIS behavior.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The quantity and characteristics of sediment deposited in lakes are affected by climate to varying extents. As sediment is deposited, it provides a record of past climatic or environmental conditions. However, determining a direct relationship between specific climatic variables and measurable sediment properties, for instance between temperature and sediment optical reflectance, is complex. In this study, we investigate the suitability of sediment reflectance, recorded as sediment pixel intensity (PxI), as a paleoclimate proxy at a large ice-contact lake in southern Patagonia, Lago Argentino. We also evaluate whether sediment PxI can be used to investigate the present-day climatic drivers of sedimentation across Lago Argentino. First, we show that sediment PxIs relate to underlying sediment composition, and are significantly correlated with XRF-derived major element composition. Secondly, we find that PxIs correlate with both austral summer temperatures and wind speeds, but not with precipitation. PxI timeseries reach thep<0.1 correlation significance threshold for use as a paleo-wind proxy in as many as 6 cores and a paleo-temperature proxy in up to 4 cores. However, high spatial variability and the non-unique relationship between PxI and both temperature and wind speed challenges the necessary assumption of stationarity at Lago Argentino. While not suitable as a paleoclimatic proxy, correlations between PxI and instrumental climate data do chronicle current climatic controls on sediment deposition at Lago Argentino: high summer temperatures enhance settling of coarse, optically dark grains across the lake basin by promoting ice melt and lake stratification, while high wind speeds reduce the settling of fine, optically bright grains in the ice-proximal regions by transporting sediment-rich waters away from the glacier fronts. The assumptions required for quantitative paleoclimatic reconstruction must be carefully evaluated in complex lacustrine environments, but records unsuitable for use as proxies might nevertheless yield valuable information about the drivers of modern sedimentary transport and deposition.more » « less
-
Abstract The Northern and Southern Patagonian Icefields are rapidly losing volume, with current volume loss rates greater than 20 km3a−1. However, details of the spatial and temporal distribution of their volume loss remain uncertain. We evaluate the rate of 21st-century glacier volume loss using the hydrological balance of four glacierised Patagonian river basins. We isolate the streamflow contribution from changes in ice volume and evaluate whether the rate of volume loss has decreased, increased, or remained constant. Out of 11 glacierised sub-basins, seven exhibit significant increases in the rate of ice volume loss, with a 2006–2019 time integrated anomaly in the rate of glacier volume loss of 135 ± 50 km3. This anomaly in the rate of glacier-volume-loss is spatially heterogeneous, varying from a 7.06 ± 1.69 m a−1increase in ice loss to a 3.18 ± 1.48 m a−1decrease in ice loss. Greatest increases in the rate of ice loss are found in the early spring and late summer, suggesting a prolonging of the melt season. Our results highlight increasing, and in some cases accelerating, rates of volume loss of Patagonia's lake-terminating glaciers, with a 2006–2019 anomaly in the rate of glacier volume loss contributing an additional 0.027 ± 0.01 mm a−1of global mean sea-level rise.more » « less
-
Climatic variability across a large fraction of the Southern Hemisphere is controlled by the Southern Annular Mode and associated latitudinal shifts in the Southern Westerly Wind belt. In Patagonia, these changes control the large-scale temperature and precipitation trends – and resulting glacier surface mass balance. Our understanding of recent changes in this climatic oscillation is, however, limited by the number of paleo-environmental records in the mid to high-latitude Southern Hemisphere. Here, we first use a synthetic proxy record to demonstrate that periodicity may be preserved in a wider range of records than can be used for quantitative paleoclimatic reconstructions. We then analyze a 5000-year-long sedimentation record derived from Lago Argentino, a 1500 km2 ice-contact lake in Southern Patagonia. We extract a mass accumulation rate and greyscale pixel intensity record from 28 cores across all of Lago Argentino's main depositional environments. We align the mass accumulation rate and pixel intensity records to a common time axis through multivariate dynamic-time-warping, and investigate their spectral properties using the multi-taper Lomb Scargle periodogram. We find statistically significant spectral peaks at 200 ± 20, 150 ± 16, and 85 ± 9 years in two thirds of mass accumulation rate and one third of the pixel intensity records. These periodicities reveal the centennial periodicity of the Southern Annular Mode, which is the key climatic driver of sedimentation at Lago Argentino.more » « less
-
Abstract. Determining the timing and extent of Quaternary glaciations around the globe is critical to understanding the drivers behind climate change and glacier fluctuations. Evidence from the southern mid-latitudes indicates that local glacial maxima preceded the global Last Glacial Maximum (LGM), implying that feedbacks in the climate system or ice dynamics played a role beyond the underlying orbital forcings. To shed light on these processes, we investigated the glacial landforms shaped and deposited by the Lago Argentino glacier (50° S), an outlet lobe of the former Patagonian Ice Sheet, in southern Argentina. We mapped geomorphological features on the landscape and dated moraine boulders and outwash sediments using 10Be cosmogenic nuclides and feldspar infrared stimulated luminescence (IRSL) to constrain the chronology of glacial advance and retreat. We report that the Lago Argentino glacier lobe reached more extensive limits prior to the global LGM, advancing during the middle to late Pleistocene between 243–132 ka and during Marine Isotope Stage 3 (MIS 3), culminating at 44.5 ± 8.0 and at 36.6 ± 1.0 ka. Our results indicate that the most extensive advance of the last glacial cycle occurred during MIS 3, and we hypothesize that this was a result of longer and colder winters, as well as increased precipitation delivered by a latitudinal migration of the Southern Westerly Winds belt, highlighting the role of local and regional climate feedbacks in modulating ice mass changes in the southern mid-latitudes.more » « less
-
Abstract. There is unambiguous evidence that glaciers have retreated from their 19th century positions, but it is less clear how far glaciers have retreated relative to their long-term Holocene fluctuations. Glaciers in western North America are thought to have advanced from minimum positions in the Early Holocene to maximum positions in the Late Holocene. We assess when four North American glaciers, located between 38–60∘ N, were larger or smaller than their modern (2018–2020 CE) positions during the Holocene. We measured 26 paired cosmogenic in situ 14C and 10Be concentrations in recently exposed proglacial bedrock and applied a Monte Carlo forward model to reconstruct plausible bedrock exposure–burial histories. We find that these glaciers advanced past their modern positions thousands of years apart in the Holocene: a glacier in the Juneau Icefield (BC, Canada) at ∼2 ka, Kokanee Glacier (BC, Canada) at ∼6 ka, and Mammoth Glacier (WY, USA) at ∼1 ka; the fourth glacier, Conness Glacier (CA, USA), was likely larger than its modern position for the duration of the Holocene until present. The disparate Holocene exposure–burial histories are at odds with expectations of similar glacier histories given the presumed shared climate forcings of decreasing Northern Hemisphere summer insolation through the Holocene followed by global greenhouse gas forcing in the industrial era. We hypothesize that the range in histories is the result of unequal amounts of modern retreat relative to each glacier's Holocene maximum position, rather than asynchronous Holocene advance histories. We explore the influence of glacier hypsometry and response time on glacier retreat in the industrial era as a potential cause of the non-uniform burial durations. We also report mean abrasion rates at three of the four glaciers: Juneau Icefield Glacier (0.3±0.3 mm yr−1), Kokanee Glacier (0.04±0.03 mm yr−1), and Mammoth Glacier (0.2±0.2 mm yr−1).more » « less
-
Abstract Proglacial lakes, whose numbers have been growing around the world, may drive accelerated glacier retreat and provide valuable records of past glacier and climatic changes. Despite their importance, few studies have investigated the sedimentary properties and processes acting within large proglacial lakes. Lago Argentino (LArg) is a 1,500 km2ice‐contact lake on the eastern flank of the Southern Patagonian Icefield. Here, we describe the results from a detailed analysis of 47 sediment cores obtained throughout this lake basin, supplemented with remotely sensed data. We show that: (a) LArg exhibits a seasonal variation in sediment properties (varves); (b) varve formation results from three distinct processes, driven by seasonal changes in glacial sediment input, seasonal changes in fluvial sediment input, and seasonal variations in lake mixing; and (c) distance from glacier calving fronts provides the first‐order control on sediment grain size and accumulation rate. Our findings highlight the exceptional preservation of annual laminations within proglacial lakes, their potential for reconstructing past glacier changes, and their relevance for forecasting future glacier–lake interactions.more » « less
An official website of the United States government
