Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS). Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions. Coupled with traditional characterization techniques, XPCS was conducted to monitor the dynamic evolution of the different phases. Additionally, simulated XPCS results were obtained using colloidal rods and compared with the experimental data, offering additional insights into the dynamic behavior of the system. The results indicate that the particle dynamics of CNCs undergo a stepped decay in three stages during the self-assembly process in PG, coinciding with the observed phases. The phase transitions are associated with a total drop of Brownian diffusion rates by four orders of magnitude, a decrease of more than a thousand times slower than expected in an ideal system of repulsive Brownian rods. Given the similarity in the phase behaviors in CNCs dispersed in PG and in water, we hypothesize that these dynamic behaviors can be extrapolated to polar solvent environments. Importantly, these findings represent the direct measurement of CNC dynamics using XPCS, underscoring the feasibility of directly assessing the dynamic behavior of other rod-like colloidal suspensions.more » « lessFree, publicly-accessible full text available December 31, 2025
-
During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs) upon mixing with a sodium chloride solution. The addition of monovalent ions led to the transition to a volume-spanning arrested (gel) state. The transition of CNFs is associated with segmental aggregation of the particles, leading to a connected network and reduced Brownian motion, whereby an aligned structure can be preserved. Furthermore, we find that the extensional flow seems to enhance the formation of these segmental aggregates, which in turn provides a comprehensible explanation for the superior material properties obtained in shear-free processes used for spinning filaments from CNFs. This observation clearly highlights the need for different assembly strategies depending on morphology and interactions of the dispersed nanoparticles, where this work can be used as a guide for improved nanomaterial processes.more » « less
-
null (Ed.)Time-resolved in situ characterization of well-defined mixing processes using small-angle X-ray scattering (SAXS) is usually challenging, especially if the process involves changes of material viscoelasticity. In specific, it can be difficult to create a continuous mixing experiment without shearing the material of interest; a desirable situation since shear flow both affects nanoscale structures and flow stability as well as resulting in unreliable time-resolved data. Here, we demonstrate a flow-focusing mixing device for in situ nanostructural characterization using scanning-SAXS. Given the interfacial tension and viscosity ratio between core and sheath fluids, the core material confined by sheath flows is completely detached from the walls and forms a zero-shear plug flow at the channel center, allowing for a trivial conversion of spatial coordinates to mixing times. With this technique, the time-resolved gel formation of dispersed cellulose nanocrystals (CNCs) was studied by mixing with a sodium chloride solution. It is observed how locally ordered regions, so called tactoids, are disrupted when the added monovalent ions affect the electrostatic interactions, which in turn leads to a loss of CNC alignment through enhanced rotary diffusion. The demonstrated flow-focusing scanning-SAXS technique can be used to unveil important kinetics during structural formation of nanocellulosic materials. However, the same technique is also applicable in many soft matter systems to provide new insights into the nanoscale dynamics during mixing.more » « less
-
Abstract Man‐made continuous fibers play an essential role in society today. With the increase in global sustainability challenges, there is a broad spectrum of societal needs where the development of advanced biobased fibers could provide means to address the challenges. Biobased regenerated fibers, produced from dissolved cellulose are widely used today for clothes, upholstery, and linens. With new developments in the area of advanced biobased fibers, it would be possible to compete with high‐performance synthetic fibers such as glass fibers and carbon fibers as well as to provide unique functionalities. One possible development is to fabricate fibers by spinning filaments from nanocellulose, Nature's nanoscale high‐performance building block, which will require detailed insights into nanoscale assembly mechanisms during spinning, as well as knowledge regarding possible functionalization. If successful, this could result in a new class of man‐made biobased fibers. This work aims to identify the progress made in the field of spinning of nanocellulose filaments, as well as outline necessary steps for efficient fabrication of such nanocellulose‐based filaments with controlled and predictable properties.more » « less
An official website of the United States government
