Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the impact of trading fees on the profits of arbitrageurs trading against an automated marker marker (AMM) or, equivalently, on the adverse selection incurred by liquidity providers due to arbitrage. We extend the model of Milionis et al. [2022] for a general class of two asset AMMs to both introduce fees and discrete Poisson block generation times. In our setting, we are able to compute the expected instantaneous rate of arbitrage profit in closed form. When the fees are low, in the fast block asymptotic regime, the impact of fees takes a particularly simple form: fees simply scale down arbitrage profits by the fraction of time that an arriving arbitrageur finds a profitable trade.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Guruswami, Venkatesan (Ed.)In decentralized finance ("DeFi"), automated market makers (AMMs) enable traders to programmatically exchange one asset for another. Such trades are enabled by the assets deposited by liquidity providers (LPs). The goal of this paper is to characterize and interpret the optimal (i.e., profit-maximizing) strategy of a monopolist liquidity provider, as a function of that LP’s beliefs about asset prices and trader behavior. We introduce a general framework for reasoning about AMMs based on a Bayesian-like belief inference framework, where LPs maintain an asset price estimate, which is updated by incorporating traders' price estimates. In this model, the market maker (i.e., LP) chooses a demand curve that specifies the quantity of a risky asset to be held at each dollar price. Traders arrive sequentially and submit a price bid that can be interpreted as their estimate of the risky asset price; the AMM responds to this submitted bid with an allocation of the risky asset to the trader, a payment that the trader must pay, and a revised internal estimate for the true asset price. We define an incentive-compatible (IC) AMM as one in which a trader’s optimal strategy is to submit its true estimate of the asset price, and characterize the IC AMMs as those with downward-sloping demand curves and payments defined by a formula familiar from Myerson’s optimal auction theory. We generalize Myerson’s virtual values, and characterize the profit-maximizing IC AMM. The optimal demand curve generally has a jump that can be interpreted as a "bid-ask spread," which we show is caused by a combination of adverse selection risk (dominant when the degree of information asymmetry is large) and monopoly pricing (dominant when asymmetry is small). This work opens up new research directions into the study of automated exchange mechanisms from the lens of optimal auction theory and iterative belief inference, using tools of theoretical computer science in a novel way.more » « less
-
Mining pools decrease the variance in the income of cryptocurrency miners (compared to solo mining) by distributing rewards to participating miners according to the shares submitted over a period of time. The most common definition of a “share” is a proof-of-work for a difficulty level lower than that required for block authorization—for example, a hash with at least 65 leading zeroes (in binary) rather than at least 75. The first contribution of this paper is to investigate more sophisticated approaches to pool reward distribution that use multiple classes of shares—for example, corresponding to differing numbers of leading zeroes—and assign different rewards to shares from different classes. What’s the best way to use such finer-grained information, and how much can it help? We prove that the answer is not at all: using the additional information can only increase the variance in rewards experienced by every miner. Our second contribution is to identify variance-optimal reward-sharing schemes. Here, we first prove that pay-per-share rewards simultaneously minimize the variance of all miners over all reward-sharing schemes with long-run rewards proportional to miners’ hash rates. We then show that, if we impose natural restrictions including a no-deficit condition on reward-sharing schemes, then the pay-per-last-N-shares method is optimal.more » « less
-
Practical and pervasive needs for robustness and privacy in algorithms have inspired the design of online adversarial and differentially private learning algorithms. The primary quantity that characterizes learnability in these settings is the Littlestone dimension of the class of hypotheses [Alon et al., 2019, Ben-David et al., 2009]. This characterization is often interpreted as an impossibility result because classes such as linear thresholds and neural networks have infinite Littlestone dimension. In this paper, we apply the framework of smoothed analysis [Spielman and Teng, 2004], in which adversarially chosen inputs are perturbed slightly by nature. We show that fundamentally stronger regret and error guarantees are possible with smoothed adversaries than with worst-case adversaries. In particular, we obtain regret and privacy error bounds that depend only on the VC dimension and the bracketing number of a hypothesis class, and on the magnitudes of the perturbations.more » « less
-
The best algorithm for a computational problem generally depends on the "relevant inputs," a concept that depends on the application domain and often defies formal articulation. Although there is a large literature on empirical approaches to selecting the best algorithm for a given application domain, there has been surprisingly little theoretical analysis of the problem. We model the problem of identifying a good algorithm from data as a statistical learning problem. Our framework captures several state-of-the-art empirical and theoretical approaches to the problem, and our results identify conditions under which these approaches are guaranteed to perform well. We interpret our results in the contexts of learning greedy heuristics, instance feature-based algorithm selection, and parameter tuning in machine learning.more » « less