Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 7, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
The active loop extrusion hypothesis proposes that chromatin threads through the cohesin protein complex into progressively larger loops until reaching specific boundary elements. We build upon this hypothesis and develop an analytical theory for active loop extrusion which predicts that loop formation probability is a nonmonotonic function of loop length and describes chromatin contact probabilities. We validate our model with Monte Carlo and hybrid Molecular Dynamics–Monte Carlo simulations and demonstrate that our theory recapitulates experimental chromatin conformation capture data. Our results support active loop extrusion as a mechanism for chromatin organization and provide an analytical description of chromatin organization that may be used to specifically modify chromatin contact probabilities.more » « less
-
Slide-ring gels are polymer networks with cross-links that can slide along the chains. In contrast to conventional unentangled networks with cross-links fixed along the chains, the slide-ring networks are strain-softening and distribute tension much more uniformly between their strands due to the so-called “pulley effect”. The sliding of cross-links also reduces the elastic modulus in comparison with the modulus of conventional networks with the same number density of cross-links and elastic strands. We develop a single-chain model to account for the redistribution of monomers between network strands of a primary chain. This model takes into account both the pulley effect and fluctuations in the number of monomers per network strand. The pulley effect leads to modulus reduction and uniform tension redistribution between network strands, while fluctuations in the number of strand monomers dominate the strain-softening, the magnitude of which decreases upon network swelling and increases upon deswelling.more » « less
An official website of the United States government

Full Text Available