skip to main content

Search for: All records

Creators/Authors contains: "Ruozzi, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lifted inference algorithms exploit model symmetry to reduce computational cost in probabilistic inference. However, most existing lifted inference algorithms operate only over discrete domains or continuous domains with restricted potential functions. We investigate two approximate lifted variational approaches that apply to domains with general hybrid potentials, and are expressive enough to capture multi-modality. We demonstrate that the proposed variational methods are highly scalable and can exploit approximate model symmetries even in the presence of a large amount of continuous evidence, outperforming existing message-passing-based approaches in a variety of settings. Additionally, we present a sufficient condition for the Bethe variational approximation to yield a non-trivial estimate over the marginal polytope.

    more » « less
  2. We address the problem of scaling up local-search or sampling-based inference in Markov logic networks (MLNs) that have large shared sub-structures but no (or few) tied weights. Such untied MLNs are ubiquitous in practical applications. However, they have very few symmetries, and as a result lifted inference algorithms--the dominant approach for scaling up inference--perform poorly on them. The key idea in our approach is to reduce the hard, time-consuming sub-task in sampling algorithms, computing the sum of weights of features that satisfy a full assignment, to the problem of computing a set of partition functions of graphical models, each defined over the logical variables in a first-order formula. The importance of this reduction is that when the treewidth of all the graphical models is small, it yields an order of magnitude speedup. When the treewidth is large, we propose an over-symmetric approximation and experimentally demonstrate that it is both fast and accurate. 
    more » « less