Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The identification of extragalactic fast optical transients (eFOTs) as potential multimessenger sources is one of the main challenges in time-domain astronomy. However, recent developments have allowed for probes of rapidly evolving transients. With the increasing number of alert streams from optical time-domain surveys, the next paradigm is building technologies to rapidly identify the most interesting transients for follow-up. One effort to make this possible is the fitting of objects to a variety of eFOT light curve models such as kilonovae and γ-ray burst (GRB) afterglows. In this work, we describe a new framework designed to efficiently fit transients to light curve models and flag them for further follow-up. We describe the pipeline’s workflow and a handful of performance metrics, including the nominal sampling time for each model. We highlight as examples ZTF20abwysqy, the shortest long gamma-ray burst discovered to date, and ZTF21abotose, a core-collapse supernova initially identified as a potential kilonova candidate.more » « less
-
Abstract Spectroscopic observations of nine cataclysmic variables that have been postulated to contain magnetic white dwarfs were obtained to further characterize their classifications, orbital parameters, inclinations, and/or accretion properties. Zwicky Transient Facility (ZTF) and Transiting Exoplanet Survey Satellite (TESS) data were also used when available. This information enables these systems to be useful in global population and evolution studies of close binaries. Radial velocity curves were constructed for eight of these systems, at various states of accretion. High-state spectra of ZTF0548+53 reveal strong Heiiemission, large radial velocity amplitudes, as well as cyclotron harmonics yielding a magnetic field strength of 50 MG, confirming this as a polar system. Analysis of TESS data reveals an orbital period of 92.1 minutes. High-state spectra of SDSS0837+38 determine a period of 3.18 hr, removing the ambiguity of periods found during the low state, and showing this is a regular polar and not a pre-polar system. The ZTF light curve of CSS0026+24 shows a total eclipse with a period of 122.9 minutes, and features indicative of two accretion poles. A new, remarkably large spin-to-orbit ratio is found for ZTF1631+69 (0.61), making it, along with 2011+60 (=Romanov V48), likely stream-accreting intermediate polars. ZTF data reveal the presence of ∼2 mag low states in ZTF1631+69, and along with McDonald Observatory 2.1 m and TESS light curves, confirm a grazing eclipse that is deepest at a narrow subset of beat phases. The TESS data on PTF12313+16 also indicate a partial eclipse. Analysis of ZTF data on SDSS1626+33 reveals a period of 3.17 hr and suggests the presence of a partial eclipse.more » « less
-
Abstract The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak≤ 18.5 mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection (“scanning”) to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ∼5 yr of ZTF operations. We presentBTSbot, a multimodal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features.BTSbotis able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates.BTSbotrecovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, ∼1 hr quicker than scanners). We also find thatBTSbotis not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates.BTSbothas been integrated intoFritzandKowalski, ZTF’s first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. Between 2023 December and 2024 May,BTSbotselected 609 sources in real time, 96% of which were real extragalactic transients. WithBTSbotand other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human time needed to scan.more » « less
-
Abstract The direct detection of core-collapse supernova (SN) progenitor stars is a powerful way of probing the last stages of stellar evolution. However, detections in archival Hubble Space Telescope images are limited to about one detection per year. Here, we explore whether we can increase the detection rate by using data from ground-based wide-field surveys. Due to crowding and atmospheric blurring, progenitor stars can typically not be identified in preexplosion images alone. Instead, we combine many pre-SN and late-time images to search for the disappearance of the progenitor star. As a proof of concept, we implement our search of ZTF data. For a few hundred images, we achieve limiting magnitudes of ∼23 mag in thegandrbands. However, no progenitor stars or long-lived outbursts are detected for 29 SNe withinz≤ 0.01, and the ZTF limits are typically several magnitudes less constraining than detected progenitors in the literature. Next, we estimate progenitor detection rates for the Legacy Survey of Space and Time (LSST) with the Vera C. Rubin telescope by simulating a population of nearby SNe. The background from bright host galaxies reduces the nominal LSST sensitivity by, on average, 0.4 mag. Over the 10 yr survey, we expect the detection of ∼50 red supergiant progenitors and several yellow and blue supergiants. The progenitors of Type Ib and Ic SNe will be detectable if they are brighter than −4.7 or −4.0 mag in the LSSTiband, respectively. In addition, we expect the detection of hundreds of pre-SN outbursts depending on their brightness and duration.more » « less
-
Abstract Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large numbers, but classifying these generally requires extensive spectroscopic resources. Here we presenttdescore, a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total.tdescoreis nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with recall of 77.5% for a precision of 80.2%.tdescoreis thus substantially better than any available TDE photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching. In a novel extension, we use “Shapley additive explanations” to provide a human-readable justification for each individualtdescoreclassification, enabling users to understand and form opinions about the underlying classifier reasoning.tdescorecan serve as a model for photometric identification of TDEs with time-domain surveys, such as the upcoming Rubin observatory.more » « less
-
Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M⊙) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2M☉and an envelope radius of ≈50R⊙. The extremely low nickel mass and low ejecta mass (≈0.5M⊙) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M⊙) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M☉) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys.more » « lessFree, publicly-accessible full text available June 25, 2025
-
Abstract We present the first gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for 37 Type II Cepheids (TIICs) located in 18 globular clusters based on photometric data from the Zwicky Transient Facility. We also updated BVIJHK -band absolute magnitudes for 58 TIICs in 24 globular clusters using the latest homogeneous distances to the globular clusters. The slopes of g / r / i - and B / V / I -band PL relations are found to be statistically consistent when using the same sample of distance and reddening. We employed the calibration of ri -band PL/PW relations in globular clusters to estimate a distance to M31 based on a sample of ∼270 TIICs from the PAndromeda project. The distance modulus to M31, obtained using calibrated ri -band PW relation, agrees well with the recent determination based on classical Cepheids. However, distance moduli derived using the calibrated r - and i -band PL relations are systematically smaller by ∼0.2 mag, suggesting there are possible additional systematic errors on the PL relations. Finally, we also derive the period–color (PC) relations and for the first time the period–Q-index (PQ) relations, where the Q -index is reddening free, for our sample of TIICs. The PC relations based on ( r − i ) and near-infrared colors and the PQ relations are found to be relatively independent of the pulsation periods.more » « less
-
ABSTRACT Cataclysmic variables (CVs) that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. While population synthesis models predict that around 40–70 per cent of the Galactic CVs are post-period minimum systems referred to as ‘period bouncers’, only a few dozen confirmed systems are known. We report the study and characterization of a new eclipsing CV, SRGeJ041130.3+685350 (SRGeJ0411), discovered from a joint SRG/eROSITA and ZTF programme. The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs. We obtained optical high-speed photometry to confirm the eclipse of SRGeJ0411 and determine the orbital period to be Porb ≈ 97.530 min. The spectral energy distribution suggests that the donor has an effective temperature of ≲ 1800 K. We constrain the donor mass with the period–density relationship for Roche lobe-filling stars and find that Mdonor ≲ 0.04 M⊙. The binary parameters are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer. The optical emission lines of SRGeJ0411 are single-peaked despite the system being eclipsing, which is typically only seen due to stream-fed accretion in polars. X-ray spectroscopy hints that the white dwarf in SRGeJ0411 could be magnetic, but verifying the magnetic nature of SRGeJ0411 requires further investigation. The lack of optical outbursts has made SRGeJ0411 elusive in previous surveys, and joint X-ray and optical surveys highlight the potential for discovering similar systems in the near future.more » « less
-
Abstract We present the first absolute calibration for the yellow post-asymptotic-giant-branch (PAGB) stars in thegandrband based on time-series observations from the Zwicky Transient Facility. These absolute magnitudes were calibrated using four yellow PAGB stars (one nonvarying star and three Type II Cepheids) located in the globular clusters. We provide two calibrations of thegr-band absolute magnitudes for the yellow PAGB stars, by using an arithmetic mean and a linear regression. We demonstrate that the linear regression provides a better fit to theg-band absolute magnitudes for the yellow PAGB stars. These calibratedgr-band absolute magnitudes have a potential to be used as Population II distance indicators in the era of time-domain synoptic sky surveys.more » « less
-
ABSTRACT The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.more » « less