We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from the video “Bang! You’re Dead” and performed a recognition memory test for movie content. 3 T fMRI activity was recorded prior to surgery in 11 of these participants while performing the same task. This NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, electrode locations, demographics, and functional and structural MRI scans. For technical validation, we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Abstract Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta–gamma phase–amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3–5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.
Free, publicly-accessible full text available May 9, 2025 -
Abstract Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.
-
Free, publicly-accessible full text available December 1, 2024
-
Decision-making in complex environments relies on flexibly using prior experience. This process depends on the medial frontal cortex (MFC) and the medial temporal lobe, but it remains unknown how these structures implement selective memory retrieval. We recorded single neurons in the MFC, amygdala, and hippocampus while human subjects switched between making recognition memory–based and categorization-based decisions. The MFC rapidly implemented changing task demands by using different subspaces of neural activity and by representing the currently relevant task goal. Choices requiring memory retrieval selectively engaged phase-locking of MFC neurons to amygdala and hippocampus field potentials, thereby enabling the routing of memories. These findings reveal a mechanism for flexibly and selectively engaging memory retrieval and show that memory-based choices are preferentially represented in the frontal cortex when required.more » « less
-
Abstract The left and right primate hippocampi (LH and RH) are thought to support distinct functions, but little is known about differences between the hemispheres at the neuronal level. We recorded single‐neuron and local field potentials from the human hippocampus in epilepsy patients implanted with depth electrodes. We detected theta‐frequency bouts of oscillatory activity while patients performed a visual recognition memory task. Theta appeared in bouts of 3.16 cycles, with sawtooth‐shaped oscillations that had a prolonged downswing period. Outside the seizure onset zone, the average frequency of theta bouts was higher in the RH compared to the LH (6.0 vs. 5.3 Hz). LH theta bouts had lower amplitudes and a higher prevalence compared to the RH (26% vs. 21% of total time). Additionally, the RH contained a population of thin spiking visually tuned neurons that were not present in the LH. These data show that human theta appears in short oscillatory bouts whose properties vary between hemispheres, thereby revealing neurophysiological properties of the hippocampus that differ between the hemispheres.
-
The role of the pre-supplementary motor area (pre-SMA) in linking goals to actions remains unclear. Using single-neuron recordings in human pre-SMA, Wang et al. identify cells that signal when a fixation lands on a target across several different visual search tasks. One function of pre-SMA may thus be goal detection.