skip to main content


Search for: All records

Creators/Authors contains: "Saeed, Ahmed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maintaining low tail latency is critical for the efficiency and performance of large-scale datacenter systems. Software bugs that cause tail latency problems, however, are notoriously difficult to debug. We present LDB, a new latency profiling tool that aims to overcome this challenge by precisely identifying the specific functions that are responsible for tail latency anomalies. LDB observes the latency of all functions in a running program. It uses a novel, software-only technique called stack sampling, where a busy-spinning stack scanner thread polls lightweight metadata recorded in the call stack, shifting tracing costs away from program threads. In addition, LDB uses event tagging to record requests, inter-thread synchronization, and context switching. This can be used, for example, to generate per-request timelines and to find the root cause of complex tail latency problems such as lock contention in multi-threaded programs. We evaluate LDB with three datacenter applications, finding latency problems in each. Our results further show that LDB produces actionable insights, has low overhead, and can rapidly analyze recordings, making it feasible to use in production settings. 
    more » « less
    Free, publicly-accessible full text available April 16, 2025
  2. Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less
  3. LEO satellite networks possess highly dynamic topologies, with satellites moving at 27,000 km/hour to maintain their orbit. As satellites move, the characteristics of the satellite network routes change, triggering rerouting events. Frequent rerouting can cause poor performance for path-adaptive algorithms (e.g., congestion control). In this paper, we provide a thorough characterization of route variability in LEO satellite networks, focusing on route churn and RTT variability. We show that high route churn is common, with most paths used for less than half of their lifetime. With some paths used for just a few seconds. This churn is also unnecessary with rerouting leading to marginal gains in most cases (e.g., less than a 15% reduction in RTT). Moreover, we show that the high route churn is harmful to network utilization and congestion control performance. By examining RTT variability, we find that the smallest achievable RTT between two ground stations can increase by 2.5x as satellites move in their orbits. We show that the magnitude of RTT variability depends on the location of the communicating ground stations, exhibiting a spatial structure. Finally, we show that adding more satellites, and providing more routes between stations, does not necessarily reduce route variability. Rather, constellation configuration (i.e., the number of orbits and their inclination) plays a more significant role. We hope that the findings of this study will help with designing more robust routing algorithms for LEO satellite networks. 
    more » « less
  4. Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less
  5. Balakrishnan, Mahesh ; Ghobadi, Manya (Ed.)
    Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less
  6. null (Ed.)
    To keep up with demand, servers will scale up to handle hundreds of thousands of clients simultaneously. Much of the focus of the community has been on scaling servers in terms of aggregate traffic intensity (packets transmitted per second). However, bottlenecks caused by the increasing number of concurrent clients, resulting in a large number of concurrent flows, have received little attention. In this work, we focus on identifying such bottlenecks. In particular, we define two broad categories of problems; namely, admitting more packets into the network stack than can be handled efficiently, and increasing per-packet overhead within the stack. We show that these problems contribute to high CPU usage and network performance degradation in terms of aggregate throughput and RTT. Our measurement and analysis are performed in the context of the Linux networking stack, the most widely used publicly available networking stack. Further, we discuss the relevance of our findings to other network stacks. The goal of our work is to highlight considerations required in the design of future networking stacks to enable efficient handling of large numbers of clients and flows 
    more » « less
  7. Modern end-host network stacks have to handle traffic from tens of thousands of flows and hundreds of virtual machines per single host, to keep up with the scale of modern clouds. This can cause congestion for traffic egressing from the end host. The effects of this congestion have received little attention. Currently, an overflowing queue, like a kernel queuing discipline, will drop incoming packets. Packet drops lead to worse network and CPU performance by inflating the time to transmit the packet as well as spending extra effort on retransmissions. In this paper, we show that current end-host mechanisms can lead to high CPU utilization, high tail latency, and low throughput in cases of congestion of egress traffic within the end host. We present zD, a framework for applying backpressure from a congested queue to traffic sources at end hosts that can scale to thousands of flows. We implement zD to apply backpressure in two settings: i) between TCP sources and kernel queuing discipline, and ii) between VMs as traffic sources and kernel queuing discipline in the hypervisor. zD improves throughput by up to 60%, and improves tail RTT by at least 10x at high loads, compared to standard kernel implementation. 
    more » « less
  8. BGP was initially created assuming by default that all ASes are equal. Its policies and protocols, namely BGP, evolved to accommodate a hierarchical Internet, allowing an autonomous system more control over outgoing traffic than incoming traffic. However, the modern Internet is flat, making BGP asymmetrical. In particular, routing decisions are mostly in the hands of traffic sources (i.e., content providers). This leads to suboptimal routing decisions as traffic sources can only estimate route capacity at the destination (i.e., ISP). In this paper, we present the design of Unison, a system that allows an ISP to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with content providers. Unison provides the ISP operator and the neighbors of the ISP with an abstraction ISP network in the form of a virtual switch. This abstraction allows the content providers to program the virtual switch with their requirements. It also allows the ISP to use that information to optimize the overall performance of its network. We show through extensive simulations that Unison can improve ISP throughput by up to 30% through cooperation with content providers. We also show that cooperation of content providers only improves performance, even for non-cooperating content providers (e.g., a single cooperating neighbour can improve ISP throughput by up to 6%). 
    more » « less
  9. Cloud services are deployed in datacenters connected though high-bandwidth Wide Area Networks (WANs). We find that WAN traffic negatively impacts the performance of datacenter traffic, increasing tail latency by 2.5x, despite its small bandwidth demand. This behavior is caused by the long round-trip time (RTT) for WAN traffic, combined with limited buffering in datacenter switches. The long WAN RTT forces datacenter traffic to take the full burden of reacting to congestion. Furthermore, datacenter traffic changes on a faster time-scale than the WAN RTT, making it difficult for WAN congestion control to estimate available bandwidth accurately. We present Annulus, a congestion control scheme that relies on two control loops to address these challenges. One control loop leverages existing congestion control algorithms for bottlenecks where there is only one type of traffic (i.e., WAN or datacenter). The other loop handles bottlenecks shared between WAN and datacenter traffic near the traffic source, using direct feedback from the bottleneck. We implement Annulus on a testbed and in simulation. Compared to baselines using BBR for WAN congestion control and DCTCP or DCQCN for datacenter congestion control, Annulus increases bottleneck utilization by 10% and lowers datacenter flow completion time by 1.3-3.5x. 
    more » « less
  10. Packet scheduling determines the ordering of packets in a queuing data structure with respect to some ranking function that is mandated by a scheduling policy. It is the core component in many recent innovations to optimize network performance and utilization. Our focus in this paper is on the design and deployment of packet scheduling in soft-ware. Software schedulers have several advantages over hardware including shorter development cycle and flexibility in functionality and deployment location. We substantially improve current software packet scheduling performance,while maintaining flexibility, by exploiting underlying features of packet ranking; namely, packet ranks are integers and, at any point in time, fall within a limited range of values.We introduce Eiffel, a novel programmable packet scheduling system. At the core of Eiffel is an integer priority queue based on the Find First Set (FFS) instruction and designed to support a wide range of policies and ranking functions efficiently. As an even more efficient alternative, we also pro-pose a new approximate priority queue that can outperform FFS-based queues for some scenarios. To support flexibility,Eiffel introduces novel programming abstractions to express scheduling policies that cannot be captured by current, state-of-the-art scheduler programming models. We evaluate Eiffel in a variety of settings and in both kernel and userspace deployments. We show that it outperforms state of the art systems by 3-40x in terms of either number of cores utilized for network processing or number of flows given fixed processing capacity 
    more » « less