Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 7, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available August 3, 2026
- 
            As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.more » « less
- 
            The spread of infectious diseases is a highly complex spatiotemporal process, difficult to understand, predict, and effectively respond to. Machine learning and artificial intelligence (AI) have achieved impressive results in other learning and prediction tasks; however, while many AI solutions are developed for disease prediction, only a few of them are adopted by decision-makers to support policy interventions. Among several issues preventing their uptake, AI methods are known to amplify the bias in the data they are trained on. This is especially problematic for infectious disease models that typically leverage large, open, and inherently biased spatiotemporal data. These biases may propagate through the modeling pipeline to decision-making, resulting in inequitable policy interventions. Therefore, there is a need to gain an understanding of how the AI disease modeling pipeline can mitigate biased input data, in-processing models, and biased outputs. Specifically, our vision is to develop a large-scale micro-simulation of individuals from which human mobility, population, and disease ground-truth data can be obtained. From this complete dataset—which may not reflect the real world—we can sample and inject different types of bias. By using the sampled data in which bias is known (as it is given as the simulation parameter), we can explore how existing solutions for fairness in AI can mitigate and correct these biases and investigate novel AI fairness solutions. Achieving this vision would result in improved trust in such models for informing fair and equitable policy interventions.more » « less
- 
            As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal predictive modeling for crowd movements is a challenging task particularly considering scenarios where societal events drive mobility behavior deviated from the normality. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes nor adaptive to unprecedented volatility brought by potential societal events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of societal events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. Code and data are published on https://github.com/underdoc-wang/EAST-Net.more » « less
- 
            Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)–equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-the-art, and describe open challenges for the research community in the coming years.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
