skip to main content


Title: Event-Aware Multimodal Mobility Nowcasting
As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal predictive modeling for crowd movements is a challenging task particularly considering scenarios where societal events drive mobility behavior deviated from the normality. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes nor adaptive to unprecedented volatility brought by potential societal events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of societal events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. Code and data are published on https://github.com/underdoc-wang/EAST-Net.  more » « less
Award ID(s):
2125165 2301552
NSF-PAR ID:
10436854
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
4
ISSN:
2159-5399
Page Range / eLocation ID:
4228 to 4236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches. 
    more » « less
  2. null (Ed.)
    Disease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID- 19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics. We propose a recurrent message passing graph neural network that embeds spatio-temporal disease dynamics and human mobility dynamics for daily state-level new confirmed cases forecasting. This work represents one of the early papers on the use of GNNs to forecast COVID-19 incidence dynamics and our methods are competitive to existing methods. We show that the spatial and temporal dynamic mobility graph leveraged by the graph neural network enables better long-term forecasting performance compared to baselines. 
    more » « less
  3. Crowd mobility prediction, in particular, forecasting flows at and transitions across different locations, is essential for crowd analytics and management in spacious environments featured with large gathering. We propose GAEFT, a novel crowd mobility analytics system based on the multi-task graph attention neural network to forecast crowd flows (inflows/outflows) and transitions. Specifically, we leverage the collective and sanitized campus Wi-Fi association data provided by our university information technology service and conduct a relatable case study. Our comprehensive data analysis reveals the important challenges of sparsity and skewness, as well as the complex spatio-temporal variations within the crowd mobility data. Therefore, we design a novel spatio-temporal clustering method to group Wi-Fi access points (APs) with similar transition features, and obtain more regular mobility features for model inputs. We then propose an attention-based graph embedding design to capture the correlations among the crowd flows and transitions, and jointly predict the AP-level flows as well as transitions across buildings and clusters through a multi-task formulation. Extensive experimental studies using more than 28 million association records collected during 2020-2021 academic year validate the excellent accuracy of GAEFT in forecasting dynamic and complex crowd mobility. 
    more » « less
  4. Video summarization aims to simplify large-scale video browsing by generating con- cise, short summaries that diver from but well represent the original video. Due to the scarcity of video annotations, recent progress for video summarization concentrates on unsupervised methods, among which the GAN-based methods are most prevalent. This type of methods includes a summarizer and a discriminator. The summarized video from the summarizer will be assumed as the final output, only if the video reconstructed from this summary cannot be discriminated from the original one by the discriminator. The primary problems of this GAN-based methods are two-folds. First, the summarized video in this way is a subset of original video with low redundancy and contains high priority events/entities. This summarization criterion is not enough. Second, the training of the GAN framework is not stable. This paper proposes a novel Entity–relationship Aware video summarization method (ERA) to address the above problems. To be more spe- cific, we introduce an Adversarial Spatio-Temporal network to construct the relationship among entities, which we think should also be given high priority in the summarization. The GAN training problem is solved by introducing the Wasserstein GAN and two newly proposed video-patch/score-sum losses. In addition, the score-sum loss can also relieve the model sensitivity to the varying video lengths, which is an inherent problem for most current video analysis tasks. Our method substantially lifts the performance on the target benchmark datasets and exceeds the current state-of-the-art. We hope our straightfor- ward yet effective approach will shed some light on the future research of unsupervised video summarization. The code is available online. 
    more » « less
  5. Abstract

    Interferometric Synthetic Aperture Radar (InSAR) provides subcentimetric measurements of surface displacements, which are key for characterizing and monitoring magmatic processes in volcanic regions. The abundant measurements of surface displacements in multitemporal InSAR data routinely acquired by SAR satellites can facilitate near real‐time volcano monitoring on a global basis. However, the presence of atmospheric signals in interferograms complicates the interpretation of those InSAR measurements, which can even lead to a misinterpretation of InSAR signals and volcanic unrest. Given the vast quantities of SAR data available, an automatic InSAR data processing and denoising approach is required to separate volcanic signals that are cause of concern from atmospheric signals and noise. In this study, we employ a deep learning strategy that directly removes atmospheric and other noise signals from time‐consecutive unwrapped surface displacements obtained through an InSAR time series approach using an end‐to‐end convolutional neural network (CNN) with an encoder‐decoder architecture, modified U‐net. The CNN is trained with simulated synthetic unwrapped surface displacement maps and is then applied to real InSAR data. Our proposed architecture is capable of detecting dynamic spatio‐temporal patterns of volcanic surface displacements. We find that an ensemble‐average strategy is recommended to stabilize detected results for varying deformation rates and signal‐to‐noise ratios (SNRs). A case study is also presented where this method is applied to InSAR data covering Masaya volcano, Nicaragua and the results are validated using continuous GPS data. The results confirm that our network can indeed efficiently suppress atmospheric and other noise to reveal the noise‐free surface deformation.

     
    more » « less