Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the past century, supernova (SN) searches have detected multiple supernovae (SNe) in hundreds of individual galaxies. So-called SN siblings discovered in the same galaxy present an opportunity to constrain the dependence of the properties of SNe on those of their host galaxies. To investigate whether there is a connection between sibling SNe in galaxies that have hosted multiple SNe and the properties of galaxies, we have acquired integrated optical spectroscopy of 59 galaxies with multiple core-collapse SNe. Perhaps surprisingly, a strong majority of host galaxy spectra fall within the composite region of the Baldwin–Phillips–Terlevich (BPT) diagram. We find a statistically significant difference (Kolmogorov–Smirnov test p-value = 0.044) between the distributions of the [Nii]λ6583/Hα of galaxies that have hosted a majority of SNe Ibc and those that have hosted a majority of Type II supernovae (SNe II), where the majority of Type Ibc supernovae (SNe Ibc) galaxies have, on average, higher ratios. The difference between the distributions of [Nii]λ6583/Hα may arise from either increased contribution from active galactic nuclei or low-ionization nuclear emission-line regions in SNe Ibc host galaxies, greater metallicity for SNe Ibc host galaxies, or both. When comparing the inferred oxygen abundance and the ionization parameter for the galaxies in the star-forming region on the BPT diagram, we find statistically significant differences between the distributions for SNe Ibc hosts and SNe II hosts (p= 0.008 and p= 0.001, respectively), as well as SNe Ib hosts and SNe II hosts (p = 0.030 and p= 0.006, respectively). We also compare the Hα equivalent width distributions, also integrated across the galaxies, and find no significant difference.more » « lessFree, publicly-accessible full text available February 28, 2026
-
ABSTRACT As we observe a rapidly growing number of astrophysical transients, we learn more about the diverse host galaxy environments in which they occur. Host galaxy information can be used to purify samples of cosmological Type Ia supernovae, uncover the progenitor systems of individual classes, and facilitate low-latency follow-up of rare and peculiar explosions. In this work, we develop a novel data-driven methodology to simulate the time-domain sky that includes detailed modelling of the probability density function for multiple transient classes conditioned on host galaxy magnitudes, colours, star formation rates, and masses. We have designed these simulations to optimize photometric classification and analysis in upcoming large synoptic surveys. We integrate host galaxy information into the snana simulation framework to construct the simulated catalogue of optical transients and correlated hosts (SCOTCH, a publicly available catalogue of 5-million idealized transient light curves in LSST passbands and their host galaxy properties over the redshift range 0 < z < 3. This catalogue includes supernovae, tidal disruption events, kilonovae, and active galactic nuclei. Each light curve consists of true top-of-the-galaxy magnitudes sampled with high (≲2 d) cadence. In conjunction with SCOTCH, we also release an associated set of tutorials and transient-specific libraries to enable simulations of arbitrary space- and ground-based surveys. Our methodology is being used to test critical science infrastructure in advance of surveys by the Vera C. Rubin Observatory and the Nancy G. Roman Space Telescope.more » « less
-
Abstract We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended Niii(λλ4634.0,4640.6)/Ciii(λλ4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2M⊙yr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialRCSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ= 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hαemission flux,RCSM,out≳ 9 × 1013cm.more » « less
-
Abstract We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15 yr data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves (GWs). This is NANOGrav’s fifth public data release, including both “narrowband” and “wideband” time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by 3 yr, now spanning nearly 16 yr for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic GW background.more » « less