Gravitational lensing magnification of Type Ia supernovae (SNe Ia) allows information to be obtained about the distribution of matter on small scales. In this paper, we derive limits on the fraction $\alpha$ of the total matter density in compact objects (which comprise stars, stellar remnants, small stellar groupings, and primordial black holes) of mass M > 0.03 ${\rm M}_{\odot }$ over cosmological distances. Using 1532 SNe Ia from the Dark Energy Survey Year 5 sample (DES-SN5YR) combined with a Bayesian prior for the absolute magnitude M, we obtain α < 0.12 at the 95 per cent confidence level after marginalization over cosmological parameters, lensing due to large-scale structure, and intrinsic non-Gaussianity. Similar results are obtained using priors from the cosmic microwave background, baryon acoustic oscillations, and galaxy weak lensing, indicating our results do not depend on the background cosmology. We argue our constraints are likely to be conservative (in the sense of the values we quote being higher than the truth), but discuss scenarios in which they could be weakened by systematics of the order of $\Delta \alpha \sim 0.04$.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Galaxy scaling relations provide insights into the processes that drive galaxy evolution. The extension of these scaling relations into the dwarf galaxy regime is of particular interest. This is because dwarf galaxies represent a crucial stage in galaxy evolution, and understanding them could also shed light on their role in reionizing the early Universe. There is currently no consensus on the processes that dominate the evolution of dwarfs. In this work, we constrain the atomic gas sequence (stellar mass versus atomic gas fraction) and mass–metallicity relation (stellar mass versus gas-phase metallicity) from dwarf ($10^{6.5} \, {\rm M}_{\odot }$) to massive ($10^{11.5} \, {\rm M}_{\odot }$) galaxies in the local Universe. The combined optical and 21-cm spectroscopic observations of the Dark Energy Spectroscopic Instrument and Arecibo Legacy Fast ALFA surveys allow us to constrain both scaling relations simultaneously. We find a slope change of the atomic gas sequence at a stellar mass of ${\sim} 10^{9} \, \textrm{M}_{\odot }$. We also find that the shape and scatter of the atomic gas sequence and mass–metallicity relation are strongly linked for both dwarfs and more massive galaxies. Consequently, the low-mass slope change of the atomic gas sequence is imprinted onto the mass–metallicity relation of dwarf galaxies. The mass scale of the measured slope change is consistent with a predicted escape velocity threshold below which low-mass galaxies experience significant supernova-driven gas loss, as well as with a reduction in cold gas accretion onto more massive galaxies.
-
ABSTRACT High-ionization iron coronal lines (CLs) are a rare phenomenon observed in galaxy and quasi-stellar object spectra that are thought to be created by high-energy emission from active galactic nuclei and certain types of transients. In cases known as extreme coronal line emitting galaxies (ECLEs), these CLs are strong and fade away on a time-scale of years. The most likely progenitors of these variable CLs are tidal disruption events (TDEs), which produce sufficient high-energy emission to create and sustain the CLs over these time-scales. To test the possible connection between ECLEs and TDEs, we present the most complete variable ECLE rate calculation to date and compare the results to TDE rates from the literature. To achieve this, we search for ECLEs in the Sloan Digital Sky Survey (SDSS). We detect sufficiently strong CLs in 16 galaxies, more than doubling the number previously found in SDSS. Using follow-up spectra from the Dark Energy Spectroscopic Instrument and Gemini Multi-Object Spectrograph, Wide-field Infrared Survey Explorer mid-infrared observations, and Liverpool Telescope optical photometry, we find that none of the nine new ECLEs evolve in a manner consistent with that of the five previously discovered variable ECLEs. Using this sample of five variable ECLEs, we calculate the galaxy-normalized rate of variable ECLEs in SDSS to be $R_\mathrm{G}=3.6~^{+2.6}_{-1.8}~(\mathrm{statistical})~^{+5.1}_{-0.0}~(\mathrm{systematic})\times 10^{-6}~\mathrm{galaxy}^{-1}~\mathrm{yr}^{-1}$. The mass-normalized rate is $R_\mathrm{M}=3.1~^{+2.3}_{-1.5}~(\mathrm{statistical})~^{+4.4}_{-0.0}~(\mathrm{systematic})\times 10^{-17}~\mathrm{M_\odot ^{-1}}~\mathrm{yr}^{-1}$ and the volumetric rate is $R_\mathrm{V}=7~^{+20}_{-5}~(\mathrm{statistical})~^{+10}_{-0.0}~(\mathrm{systematic})\times 10^{-9}~\mathrm{Mpc}^{-3}~\mathrm{yr}^{-1}$. Our rates are one to two orders of magnitude lower than TDE rates from the literature, which suggests that only 10–40 per cent of all TDEs produce variable ECLEs. Additional uncertainties in the rates arising from the structure of the interstellar medium have yet to be included.
-
ABSTRACT Low-density cosmic voids gravitationally lens the cosmic microwave background (CMB), leaving a negative imprint on the CMB convergence $\kappa$. This effect provides insight into the distribution of matter within voids, and can also be used to study the growth of structure. We measure this lensing imprint by cross-correlating the Planck CMB lensing convergence map with voids identified in the Dark Energy Survey Year 3 (DES Y3) data set, covering approximately 4200 deg$^2$ of the sky. We use two distinct void-finding algorithms: a 2D void-finder that operates on the projected galaxy density field in thin redshift shells, and a new code, Voxel, which operates on the full 3D map of galaxy positions. We employ an optimal matched filtering method for cross-correlation, using the Marenostrum Institut de Ciències de l’Espai N-body simulation both to establish the template for the matched filter and to calibrate detection significances. Using the DES Y3 photometric luminous red galaxy sample, we measure $A_\kappa$, the amplitude of the observed lensing signal relative to the simulation template, obtaining $A_\kappa = 1.03 \pm 0.22$ ($4.6\sigma$ significance) for Voxel and $A_\kappa = 1.02 \pm 0.17$ ($5.9\sigma$ significance) for 2D voids, both consistent with Lambda cold dark matter expectations. We additionally invert the 2D void-finding process to identify superclusters in the projected density field, for which we measure $A_\kappa = 0.87 \pm 0.15$ ($5.9\sigma$ significance). The leading source of noise in our measurements is Planck noise, implying that data from the Atacama Cosmology Telescope, South Pole Telescope and CMB-S4 will increase sensitivity and allow for more precise measurements.
-
Abstract Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightness
are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax–Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split byg −i color or surface brightnessμ eff,g , we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed. -
Abstract We measure the clustering of Lyman Alpha Emitting galaxies (LAEs) selected from the One-hundred-square-degree DECam Imaging in Narrowbands (ODIN) survey, with spectroscopic follow-up from Dark Energy Spectroscopic Instrument (DESI). We use DESI spectroscopy to optimize our selection and to constrain the interloper fraction and redshift distribution of our narrow-band selected sources. We select samples of 4000 LAEs at
z = 2.45 and 3.1 in 9 sq.deg. centered on the COSMOS field with median Lyα fluxes of ≈ 10-16erg s-1cm-2. Covariances and cosmological inferences are obtained from a series of mock catalogs built upon high-resolution N-body simulations that match the footprint, number density, redshift distribution and observed clustering of the sample. We find that both samples have a correlation length ofr 0= 3.0 ± 0.2 h-1Mpc. Within our fiducial cosmology these correspond to 3D number densities of ≈ 10-3h3Mpc-3and, from our mock catalogs, biases of 1.7 and 2.0 atz = 2.45 and 3.1, respectively. We discuss the implications of these measurements for the use of LAEs as large-scale structure tracers for high-redshift cosmology.Free, publicly-accessible full text available August 1, 2025 -
Abstract The Dark Energy Spectroscopic Instrument (DESI) is a revolutionary instrument designed for precise measurements of cosmic distances and the investigation of dark energy. DESI utilizes 5000 optical fibers to simultaneously measure the spectra of distant objects and aims to measure 40 million galaxies and quasars in a 5 yr survey. One of the critical challenges to DESI’s success was ensuring that the fiber system was not only highly efficient but also delivered a highly stable beam enabling more reliable sky subtraction for measurements of faint objects. We achieved this stability by minimizing the stress on the fiber system during the manufacture and operation of the telescope and fiber positioning robots. We installed the DESI fiber system on the 4 m Mayall telescope with ≥99% of fibers intact, and the instrument has delivered superb optical performance throughout the initial years of the DESI survey, including ≥90% average throughput when injected with a focal ratio of ∼
f /3.9 as delivered by the primary focus corrector, excluding fiber absorption losses. The design of DESI required multiple innovations to achieve these requirements, such as cleaved fibers bonded with a UV-curing epoxy to glass ferrules in the focal plane and fusion splicing instead of physical connectors. In this paper, we describe the development, delivery, and installation of the fiber system, the innovations that made the state-of-the-art performance possible, and the key lessons learned that could benefit future projects. -
ABSTRACT Type Ia Supernovae (SNe Ia) are a critical tool in measuring the accelerating expansion of the universe. Recent efforts to improve these standard candles have focused on incorporating the effects of dust on distance measurements with SNe Ia. In this paper, we use the state-of-the-art Dark Energy Survey 5 year sample to evaluate two different families of dust models: empirical extinction models derived from SNe Ia data and physical attenuation models from the spectra of galaxies. In this work, we use realistic simulations of SNe Ia to forward-model different models of dust and compare summary statistics in order to test different assumptions and impacts on SNe Ia data. Among the SNe Ia-derived models, we find that a logistic function of the total-to-selective extinction $R_V$ best recreates the correlations between supernova distance measurements and host galaxy properties, though an additional 0.02 mag of grey scatter is needed to fully explain the scatter in SNIa brightness in all cases. These empirically derived extinction distributions are highly incompatible with the physical attenuation models from galactic spectral measurements. From these results, we conclude that SNe Ia must either preferentially select extreme ends of galactic dust distributions, or that the characterization of dust along the SNe Ia line-of-sight is incompatible with that of galactic dust distributions.
-
ABSTRACT The Early Data Release (EDR) of the Dark Energy Spectroscopic Instrument (DESI) comprises spectroscopy obtained from 2020 December 14 to 2021 June 10. White dwarfs were targeted by DESI both as calibration sources and as science targets and were selected based on Gaia photometry and astrometry. Here, we present the DESI EDR white dwarf catalogue, which includes 2706 spectroscopically confirmed white dwarfs of which approximately 60 per cent have been spectroscopically observed for the first time, as well as 66 white dwarf binary systems. We provide spectral classifications for all white dwarfs, and discuss their distribution within the Gaia Hertzsprung–Russell diagram. We provide atmospheric parameters derived from spectroscopic and photometric fits for white dwarfs with pure hydrogen or helium photospheres, a mixture of those two, and white dwarfs displaying carbon features in their spectra. We also discuss the less abundant systems in the sample, such as those with magnetic fields, and cataclysmic variables. The DESI EDR white dwarf sample is significantly less biased than the sample observed by the Sloan Digital Sky Survey, which is skewed to bluer and therefore hotter white dwarfs, making DESI more complete and suitable for performing statistical studies of white dwarfs.