Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Jain, Harsh ; Hao, Wenrui ; Rempala, Grzegorz ; Wang, Yangyang (Ed.)Free, publicly-accessible full text available November 1, 2025
-
We consider distributed consensus in networks where the agents have integrator dynamics of order two or higher (n>=2). We assume all feedback to be localized in the sense that each agent has a bounded number of neighbors and consider a scaling of the network through the addition of agents in a modular manner, i.e., without re-tuning controller gains upon addition. We show that standard consensus algorithms, which rely on relative state feedback, are subject to what we term scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n>=3), we prove that no consensus algorithm with fixed gains can achieve consensus in networks of any size. That is, while a given algorithm may allow a small network to converge, it causes instability if the network grows beyond a certain finite size. This holds in families of network graphs whose algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in network size (e.g. all planar graphs). For second-order consensus (n=2) we prove that the same scale fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin (e.g. directed ring graphs). The proofs for both results rely on Routh–Hurwitz criteria for complex-valued polynomials and hold true for general directed network graphs. We survey classes of graphs subject to these scale fragilities, discuss their scaling constants, and finally prove that a sub-linear scaling of nodal neighborhoods can suffice to overcome the issue.more » « less
-
In this paper we study a discrete-time SIS (susceptible-infected-susceptible) model, where the infection and healing parameters and the underlying network may change over time. We provide conditions for the model to be well-defined and study its stability. For systems with homogeneous infection rates over symmetric graphs, we provide a sufficient condition for global exponential stability (GES) of the healthy state, that is, where the virus is eradicated. For systems with heterogeneous virus spread over directed graphs, provided that the variation is not too fast, a sufficient condition for GES of the healthy state is established. Appealing to the first stability result, we present two data-driven mitigation strategies that set the healing parameters in a centralized and a distributed manner, respectively, in order to drive the system to the healthy state.more » « less