Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
We give an algorithm to find a minimum cut in an edge-weighted directed graph with n vertices and m edges in O ̃(n · max{m^{2/3}, n}) time. This improves on the 30 year old bound of O ̃(nm) obtained by Hao and Orlin for this problem. Using similar techniques, we also obtain O ̃ (n^2 /ε^2 )-time (1+ε)-approximation algorithms for both the minimum edge and minimum vertex cuts in directed graphs, for any fixed ε. Before our work, no (1+ε)-approximation algorithm better than the exact runtime of O ̃(nm) is known for either problem. Our algorithms follow a two-step template. In the first step, we employ a partial sparsification of the input graph to preserve a critical subset of cut values approximately. In the second step, we design algorithms to find the (edge/vertex) mincut among the preserved cuts from the first step. For edge mincut, we give a new reduction to O ̃ (min{n/m^{1/3} , √n}) calls of any maxflow subroutine, via packing arborescences in the sparsifier. For vertex mincut, we develop new local flow algorithms to identify small unbalanced cuts in the sparsified graph.more » « less
-
null (Ed.)We present improved distributed algorithms for variants of the triangle finding problem in the model. We show that triangle detection, counting, and enumeration can be solved in rounds using expander decompositions . This matches the triangle enumeration lower bound of by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the model. The previous upper bounds for triangle detection and enumeration in were and , respectively, due to Izumi and Le Gall [PODC’17]. An -expander decomposition of a graph is a clustering of the vertices such that (i) each cluster induces a subgraph with conductance at least and (ii) the number of inter-cluster edges is at most . We show that an -expander decomposition with can be constructed in rounds for any and positive integer . For example, a -expander decomposition only requires rounds to compute, which is optimal up to subpolynomial factors, and a -expander decomposition can be computed in rounds, for any arbitrarily small constant . Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate algorithms with small overhead by applying the expander routing algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.more » « less