skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarkar, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 9, 2026
  2. Galaxy cluster mergers are excellent laboratories for studying a wide variety of different physical phenomena. An example of such a cluster system is the distant SPT-CLJ2228-5828 merger located atz ≈ 0.77. Previous analyses via the thermal Sunyaev-Zeldovich effect and weak lensing (WL) data suggested that the system was potentially a dissociative cluster post-merger, similar to the Bullet cluster. In this work, we perform an X-ray and optical follow-up analysis of this rare system. We used new deepXMM-Newtondata to study the hot gas in X-rays in great detail, spectroscopicGeminidata to precisely determine the redshift of the two mass concentrations, and newHubbleSpace Telescope data to improve the total mass estimates of the two components. We find that SPT-CLJ2228-5828 constitutes a pre-merging double cluster system instead of a post-merger as previously thought. The merging process of the two clusters has started, with their gas on the outskirts colliding with a ∼22° −27° on the plane of the sky. Both clusters have a similar radius ofR500 ∼ 700 kpc, with the two X-ray emission peaks separated by ≈1 Mpc (2.1′). We fully characterized the surface brightness, gas density, temperature, pressure, and entropy profiles of the two merging clusters for their undisturbed non-interacting side. The two systems have very similar X-ray properties, with a moderate cluster mass ofMtot ∼ (2.1 − 2.4)×1014 Maccording to X-ray mass proxies. Both clusters show good agreement with known X-ray scaling relations when their merging side is ignored. The WL mass estimate of the western cluster agrees well with the X-ray-based mass, whereas the eastern cluster is surprisingly only marginally detected from its WL signal. A gas bridge with ≈333 kpc length connecting the two merging halos is detected at a 5.8σlevel. The baryon overdensity of the excess gas (not associated with the cluster gas) isδb ∼ (75 − 320) across the length of the bridge, and its gas mass isMgas ∼ 1.4 × 1012 M. The gas density and temperature jumps at ∼10−3cm−3and ∼5.5 keV, respectively, are also found across the gas bridge, revealing the existence of a weak shock front with a Mach number ℳ ∼ 1.1. The gas pressure and entropy also increase at the position of the shock front. We estimate the age of the shock front to be ≲100 Myr and its kinetic energy ∼2.4 × 1044erg s−1. SPT-CLJ2228-5828 is the first such high-zpre-merger with a gas bridge and a shock front, consisting of similarly sized clusters, to be studied in X-rays. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Randomized clinical trials have been the mainstay of clinical research, but are prohibitively expensive and subject to increasingly difficult patient recruitment. Recently, there is a movement to use real-world data (RWD) from electronic health records, patient registries, claims data and other sources in lieu of or supplementing controlled clinical trials. This process of combining information from diverse sources calls for inference under a Bayesian paradigm. We review some of the currently used methods and a novel non-parametric Bayesian (BNP) method. Carrying out the desired adjustment for differences in patient populations is naturally done with BNP priors that facilitate understanding of and adjustment for population heterogeneities across different data sources. We discuss the particular problem of using RWD to create a synthetic control arm to supplement single-arm treatment only studies. At the core of the proposed approach is the model-based adjustment to achieve equivalent patient populations in the current study and the (adjusted) RWD. This is implemented using common atoms mixture models. The structure of such models greatly simplifies inference. The adjustment for differences in the populations can be reduced to ratios of weights in such mixtures. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’. 
    more » « less
  4. We present constraints on the f ( R ) gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at z < 0.95 and from the Hubble Space Telescope for 39 clusters with 0.6 < z < 1.7 . Our cluster sample is a powerful probe of f ( R ) gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the f ( R ) parameter f R 0 . Our results, log 10 | f R 0 | < 5.32 at the 95% credible level, are the tightest current constraints on f ( R ) gravity from cosmological scales. This upper limit rules out f ( R ) -like deviations from general relativity that result in more than a 20 % enhancement of the cluster population on mass scales M 200 c > 3 × 10 14 M . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. null (Ed.)
  6. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  8. null (Ed.)
  9. This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime 
    more » « less
    Free, publicly-accessible full text available July 1, 2026