skip to main content

Search for: All records

Creators/Authors contains: "Sato, Takami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. After the 2017 TuSimple Lane Detection Challenge, its dataset and evaluation based on accuracy and F1 score have become the de facto standard to measure the performance of lane detection methods. While they have played a major role in improving the performance of lane detection methods, the validity of this evaluation method in downstream tasks has not been adequately researched. In this study, we design 2 new driving-oriented metrics for lane detection: End-to-End Lateral Deviation metric (E2E-LD) is directly formulated based on the requirements of autonomous driving, a core downstream task of lane detection; Per-frame Simulated Lateral Deviation metric (PSLD) is a lightweight surrogate metric of E2E-LD. To evaluate the validity of the metrics, we conduct a large-scale empirical study with 4 major types of lane detection approaches on the TuSimple dataset and our newly constructed dataset Comma2k19-LD. Our results show that the conventional metrics have strongly negative correlations (≤-0.55) with E2E-LD, meaning that some recent improvements purely targeting the conventional metrics may not have led to meaningful improvements in autonomous driving, but rather may actually have made it worse by overfitting to the conventional metrics. As autonomous driving is a security/safety-critical system, the underestimation of robustness hinders the soundmore »development of practical lane detection models. We hope that our study will help the community achieve more downstream task-aware evaluations for lane detection.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Automated Lane Centering (ALC) systems are convenient and widely deployed today, but also highly security and safety critical. In this work, we are the first to systematically study the security of state-of-the-art deep learning based ALC systems in their designed operational domains under physical-world adversarial attacks. We formulate the problem with a safetycritical attack goal, and a novel and domain-specific attack vector: dirty road patches. To systematically generate the attack, we adopt an optimization-based approach and overcome domain-specific design challenges such as camera frame interdependencies due to attack-influenced vehicle control, and the lack of objective function design for lane detection models. We evaluate our attack on a production ALC using 80 scenarios from real-world driving traces. The results show that our attack is highly effective with over 97.5% success rates and less than 0.903 sec average success time, which is substantially lower than the average driver reaction time. This attack is also found (1) robust to various real-world factors such as lighting conditions and view angles, (2) general to different model designs, and (3) stealthy from the driver’s view. To understand the safety impacts, we conduct experiments using software-in-the-loop simulation and attack trace injection in a real vehicle. The resultsmore »show that our attack can cause a 100% collision rate in different scenarios, including when tested with common safety features such as automatic emergency braking. We also evaluate and discuss defenses.« less