skip to main content

Search for: All records

Creators/Authors contains: "Sayyad, Ehsan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences. 
    more » « less
  2. Location-based or Out-of-Home Entertainment refers to experiences such as theme and amusement parks, laser tag and paintball arenas, roller and ice skating rinks, zoos and aquariums, or science centers and museums among many other family entertainment and cultural venues. More recently, location-based VR has emerged as a new category of out-of-home entertainment. These VR experiences can be likened to social entertainment options such as laser tag, where physical movement is an inherent part of the experience versus at-home VR experiences where physical movement often needs to be replaced by artificial locomotion techniques due to tracking space constraints. In this work, we present the first VR study to understand the impact of natural walking in a large physical space on presence and user preference. We compare it with teleportation in the same large space, since teleportation is the most commonly used locomotion technique for consumer, at-home VR. Our results show that walking was overwhelmingly preferred by the participants and teleportation leads to significantly higher self-reported simulator sickness. The data also shows a trend towards higher self-reported presence for natural walking. 
    more » « less