Green pea galaxies are starbursting, low-mass galaxies that are good analogues to star-forming galaxies in the early universe. We perform a survey of 23 green peas using the Multi Unit Spectroscopic Explorer (MUSE) Integral Field Unit spectrograph on the Very Large Telescope to search for companion galaxies. The survey reaches an average point-source depth of ∼10−18erg cm−2s−1for emission lines. The MUSE field of view allows us to probe a 1 × 1 arcmin2field around these galaxies and to search their surroundings for faint companions that could have interacted with them and induced their starburst episodes. We search for companions using a variety of methods including template matching to emission- and absorption-line spectra. When restricting the search to the same physical area (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract R = 78 kpc) for all galaxies, we find that the fraction of green pea galaxies with companions is . We define a control sample of star-forming galaxies with the same stellar masses and redshifts as the green peas, but consistent with the star formation main sequence. We find that green pea galaxies are as likely to have companions as the control sample; for which the fraction of objects with companions is . Given thatmore » -
ABSTRACT Galaxy Zoo: Clump Scout is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a data set containing 3561 454 two-dimensional points, which constitute 1739 259 annotations of 85 286 distinct subjects provided by 20 999 volunteers. Using this data set, we identify 128 100 potential clumps distributed among 44 126 galaxies. This data set can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator
-
Abstract Massive, star-forming clumps are a common feature of high-redshift star-forming galaxies. How they formed, and why they are so rare at low redshift, remains unclear. In this paper we identify the largest sample yet of clumpy galaxies (7050) at low redshift using data from the citizen science project Galaxy Zoo: Clump Scout, in which volunteers classified 58,550 Sloan Digital Sky Survey (SDSS) galaxies spanning redshift 0.02 <
z < 0.15. We apply a robust completeness correction by comparing with simulated clumps identified by the same method. Requiring that the ratio of clump to galaxy flux in the SDSSu band be greater than 8% (similar to clump definitions used by other works), we estimate the fraction of local star-forming galaxies hosting at least one clump (f clumpy) to be . We also compute the same fraction with a less stringent relative flux cut of 3% ( ), as the higher number count and lower statistical noise of this fraction permit finer comparison with future low-redshift clumpy galaxy studies. Our results reveal a sharp decline inf clumpyover 0 <z < 0.5. The minor merger rate remains roughly constant over the same span, so we suggest that minor mergers are unlikely to be themore » -
Abstract We describe the Gems of the Galaxy Zoos (Zoo Gems) project, a gap-filler project using short windows in the Hubble Space Telescope's schedule. As with previous snapshot programs, targets are taken from a pool based on position; we combine objects selected by volunteers in both the Galaxy Zoo and Radio Galaxy Zoo citizen-science projects. Zoo Gems uses exposures with the Advanced Camera for Surveys to address a broad range of topics in galaxy morphology, interstellar-medium content, host galaxies of active galactic nuclei, and galaxy evolution. Science cases include studying galaxy interactions, backlit dust in galaxies, post-starburst systems, rings and peculiar spiral patterns, outliers from the usual color–morphology relation, Green Pea compact starburst systems, double radio sources with spiral host galaxies, and extended emission-line regions around active galactic nuclei. For many of these science categories, final selection of targets from a larger list used public input via a voting process. Highlights to date include the prevalence of tightly wound spiral structure in blue, apparently early-type galaxies, a nearly complete Einstein ring from a group lens, redder components at lower surface brightness surrounding compact Green Pea starbursts, and high-probability examples of spiral galaxies hosting large double radio sources.
-
Abstract Giant, star-forming clumps are a common feature prevalent among high-redshift star-forming galaxies and play a critical role in shaping their chaotic morphologies and yet, their nature and role in galaxy evolution remains to be fully understood. A majority of the effort to study clumps has been focused at high redshifts, and local clump studies have often suffered from small sample sizes. In this work, we present an analysis of clump properties in the local universe, and for the first time, performed with a statistically significant sample. With the help of the citizen science-powered Galaxy Zoo: Hubble project, we select a sample of 92 z < 0.06 clumpy galaxies in Sloan Digital Sky Survey Stripe 82 galaxies. Within this sample, we identify 543 clumps using a contrast-based image analysis algorithm and perform photometry as well as estimate their stellar population properties. The overall properties of our z < 0.06 clump sample are comparable to the high-redshift clumps. However, contrary to the high-redshift studies, we find no evidence of a gradient in clump ages or masses as a function of their galactocentric distances. Our results challenge the inward migration scenario for clump evolution for the local universe, potentially suggesting a largermore »
-
ABSTRACT Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo have recently published the upper limit measurement of persistent directional stochastic gravitational-wave background (SGWB) based on data from their first and second observing runs. In this paper, we investigate whether a correlation exists between this maximal likelihood SGWB map and the electromagnetic (EM) tracers of matter structure in the Universe, such as galaxy number counts. The method we develop will improve the sensitivity of future searches for anisotropy in the SGWB and expand the use of SGWB anisotropy to probe the formation of structure in the Universe. In order to compute the cross-correlation, we used the spherical harmonic decomposition of SGWB in multiple frequency bands and converted them into pixel-based sky maps in healpix basis. For the EM part, we use the Sloan Digital Sky Survey alaxy catalogue and form healpix sky maps of galaxy number counts at the same angular resolution as the SGWB maps. We compute the pixel-based coherence between these SGWB and galaxy count maps. After evaluating our results in different SGWB frequency bands and in different galaxy redshift bins, we conclude that the coherence between the SGWB and galaxy number count maps is dominated by themore »
-
Abstract We use new Hubble Space Telescope (HST) images of nine Green Pea galaxies (GPGs) to study their resolved structure and color. The choice of filters, F555W and F850LP, together with the redshift of the galaxies (
z ∼ 0.25), minimizes the contribution of the nebular [Oiii ] and Hα emission lines to the broadband images. While these galaxies are typically very blue in color, our analysis reveals that it is only the dominant stellar clusters that are blue. Each GPG does clearly show the presence of at least one bright and compact star-forming region, but these are invariably superimposed on a more extended and lower surface brightness emission. Moreover, the colors of the star-forming regions are on average bluer than those of the diffuse emission, reaching up to 0.6 magnitudes bluer. Assuming that the diffuse and compact components have constant and single-burst star formation histories, respectively, the observed colors imply that the diffuse components (possibly the host galaxy of the star formation episode) have, on average, old stellar ages (>1 Gyr), while the star clusters are younger than 500 Myr. While a redder stellar component is perhaps the most plausible explanation for these results, the limitations of our current data set lead usmore » -
Abstract Far-ultraviolet (FUV; ∼1200–2000 Å) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of the James Webb Space Telescope will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before; however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the Cosmic Origins Spectrograph Legacy Spectroscopic Survey (CLASSY) treasury and its first high-level science product, the CLASSY atlas. CLASSY builds on the Hubble Space Telescope (HST) archive to construct the first high-quality (S/N1500 Å≳ 5/resel), high-resolution (
R ∼ 15,000) FUV spectral database of 45 nearby (0.002 <z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellarmore »