skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Scheidegger, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In social networks, a node’s position is, in and of itself, a form of social capital. Better-positioned members not only benefit from (faster) access to diverse information, but innately have more potential influence on information spread. Structural biases often arise from network formation, and can lead to significant disparities in information access based on position. Further, processes such as link recommendation can exacerbate this inequality by relying on network structure to augment connectivity. In this paper, we argue that one can understand and quantify this social capital through the lens of information flow in the network. In contrast to prior work, we consider the setting where all nodes may be sources of distinct information, and a node’s (dis)advantage takes into account its ability to access all information available on the network, not just that from a single source. We introduce three new measures of advantage (broadcast, influence, and control), which are quantified in terms of position in the network using access signatures – vectors that represent a node’s ability to share information with each other node in the network. We then consider the problem of improving equity by making interventions to increase the access of the least-advantaged nodes. Since all nodes are already sources of information in our model, we argue that edge augmentation is most appropriate for mitigating bias in the network structure, and frame a budgeted intervention problem for maximizing broadcast (minimum pairwise access) over the network. Finally, we propose heuristic strategies for selecting edge augmentations and empirically evaluate their performance on a corpus of real-world social networks. We demonstrate that a small number of interventions can not only significantly increase the broadcast measure of access for the least-advantaged nodes (over 5 times more than random), but also simultaneously improve the minimum influence. Additional analysis shows that edge augmentations targeted at improving minimum pairwise access can also dramatically shrink the gap in advantage between nodes (over ) and reduce disparities between their access signatures. 
    more » « less
  2. ABSTRACT There are a number of hypotheses underlying the existence of adversarial examples for classification problems. These include the high‐dimensionality of the data, the high codimension in the ambient space of the data manifolds of interest, and that the structure of machine learning models may encourage classifiers to develop decision boundaries close to data points. This article proposes a new framework for studying adversarial examples that does not depend directly on the distance to the decision boundary. Similarly to the smoothed classifier literature, we define a (natural or adversarial) data point to be (γ, σ)‐stable if the probability of the same classification is at least for points sampled in a Gaussian neighborhood of the point with a given standard deviation . We focus on studying the differences between persistence metrics along interpolants of natural and adversarial points. We show that adversarial examples have significantly lower persistence than natural examples for large neural networks in the context of the MNIST and ImageNet datasets. We connect this lack of persistence with decision boundary geometry by measuring angles of interpolants with respect to decision boundaries. Finally, we connect this approach with robustness by developing a manifold alignment gradient metric and demonstrating the increase in robustness that can be achieved when training with the addition of this metric. 
    more » « less
  3. null (Ed.)
  4. Visual exploration of large multi-dimensional datasets has seen tremendous progress in recent years, allowing users to express rich data queries that produce informative visual summaries, all in real time. Techniques based on data cubes are some of the most promising approaches. However, these techniques usually require a large memory footprint for large datasets. To tackle this problem, we present NeuralCubes: neural networks that predict results for aggregate queries, similar to data cubes. NeuralCubes learns a function that takes as input a given query, for instance, a geographic region and temporal interval, and outputs the result of the query. The learned function serves as a real-time, low-memory approximator for aggregation queries. Our models are small enough to be sent to the client side (e.g. the web browser for a web-based application) for evaluation, enabling data exploration of large datasets without database/network connection. We demonstrate the effectiveness of NeuralCubes through extensive experiments on a variety of datasets and discuss how NeuralCubes opens up opportunities for new types of visualization and interaction. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. Game-theoretic formulations of feature importance have become popular as a way to “explain” machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the game’s unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance, and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values are not a natural solution to the human-centric goals of explainability. 
    more » « less