Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In social networks, a node’s position is, in and of itself, a form of social capital. Better-positioned members not only benefit from (faster) access to diverse information, but innately have more potential influence on information spread. Structural biases often arise from network formation, and can lead to significant disparities in information access based on position. Further, processes such as link recommendation can exacerbate this inequality by relying on network structure to augment connectivity. In this paper, we argue that one can understand and quantify this social capital through the lens of information flow in the network. In contrast to prior work, we consider the setting where all nodes may be sources of distinct information, and a node’s (dis)advantage takes into account its ability to access all information available on the network, not just that from a single source. We introduce three new measures of advantage (broadcast, influence, and control), which are quantified in terms of position in the network using access signatures – vectors that represent a node’s ability to share information with each other node in the network. We then consider the problem of improving equity by making interventions to increase the access of the least-advantaged nodes. Since all nodes are already sources of information in our model, we argue that edge augmentation is most appropriate for mitigating bias in the network structure, and frame a budgeted intervention problem for maximizing broadcast (minimum pairwise access) over the network. Finally, we propose heuristic strategies for selecting edge augmentations and empirically evaluate their performance on a corpus of real-world social networks. We demonstrate that a small number of interventions can not only significantly increase the broadcast measure of access for the least-advantaged nodes (over 5 times more than random), but also simultaneously improve the minimum influence. Additional analysis shows that edge augmentations targeted at improving minimum pairwise access can also dramatically shrink the gap in advantage between nodes (over ) and reduce disparities between their access signatures.more » « less
-
Visual exploration of large multi-dimensional datasets has seen tremendous progress in recent years, allowing users to express rich data queries that produce informative visual summaries, all in real time. Techniques based on data cubes are some of the most promising approaches. However, these techniques usually require a large memory footprint for large datasets. To tackle this problem, we present NeuralCubes: neural networks that predict results for aggregate queries, similar to data cubes. NeuralCubes learns a function that takes as input a given query, for instance, a geographic region and temporal interval, and outputs the result of the query. The learned function serves as a real-time, low-memory approximator for aggregation queries. Our models are small enough to be sent to the client side (e.g. the web browser for a web-based application) for evaluation, enabling data exploration of large datasets without database/network connection. We demonstrate the effectiveness of NeuralCubes through extensive experiments on a variety of datasets and discuss how NeuralCubes opens up opportunities for new types of visualization and interaction.more » « less
-
Game-theoretic formulations of feature importance have become popular as a way to “explain” machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the game’s unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance, and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values are not a natural solution to the human-centric goals of explainability.more » « less