skip to main content


Search for: All records

Creators/Authors contains: "Scheutz, Matthias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cremonini, Marco (Ed.)
    Understanding the spread of false or dangerous beliefs—often called misinformation or disinformation—through a population has never seemed so urgent. Network science researchers have often taken a page from epidemiologists, and modeled the spread of false beliefs as similar to how a disease spreads through a social network. However, absent from those disease-inspired models is an internal model of an individual’s set of current beliefs, where cognitive science has increasingly documented how the interaction between mental models and incoming messages seems to be crucially important for their adoption or rejection. Some computational social science modelers analyze agent-based models where individuals do have simulated cognition, but they often lack the strengths of network science, namely in empirically-driven network structures. We introduce a cognitive cascade model that combines a network science belief cascade approach with an internal cognitive model of the individual agents as in opinion diffusion models as a public opinion diffusion (POD) model, adding media institutions as agents which begin opinion cascades. We show that the model, even with a very simplistic belief function to capture cognitive effects cited in disinformation study (dissonance and exposure), adds expressive power over existing cascade models. We conduct an analysis of the cognitive cascade model with our simple cognitive function across various graph topologies and institutional messaging patterns. We argue from our results that population-level aggregate outcomes of the model qualitatively match what has been reported in COVID-related public opinion polls, and that the model dynamics lend insights as to how to address the spread of problematic beliefs. The overall model sets up a framework with which social science misinformation researchers and computational opinion diffusion modelers can join forces to understand, and hopefully learn how to best counter, the spread of disinformation and “alternative facts.” 
    more » « less
  2. null (Ed.)
    Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application domains suggest that criteria for explanation vary greatly. In particular, what counts as a good explanation, and what kinds of explanation are computationally feasible, has become trickier in light of oqaque “black box” systems such as deep neural networks. Explanation in such cases has drifted from what many philosophers stipulated as having to involve deductive and causal principles to mere “interpretation,” which approximates what happened in the target system to varying degrees. However, such post hoc constructed rationalizations are highly problematic for social robots that operate interactively in spaces shared with humans. For in such social contexts, explanations of behavior, and, in particular, justifications for violations of expected behavior, should make reference to socially accepted principles and norms. In this article, we show how a social robot’s actions can face explanatory demands for how it came to act on its decision, what goals, tasks, or purposes its design had those actions pursue and what norms or social constraints the system recognizes in the course of its action. As a result, we argue that explanations for social robots will need to be accurate representations of the system’s operation along causal, purposive, and justificatory lines. These explanations will need to generate appropriate references to principles and norms—explanations based on mere “interpretability” will ultimately fail to connect the robot’s behaviors to its appropriate determinants. We then lay out the foundations for a cognitive robotic architecture for HRI, together with particular component algorithms, for generating explanations and engaging in justificatory dialogues with human interactants. Such explanations track the robot’s actual decision-making and behavior, which themselves are determined by normative principles the robot can describe and use for justifications. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Symbolic planning models allow decision-making agents to sequence actions in arbitrary ways to achieve a variety of goals in dynamic domains. However, they are typically handcrafted and tend to require precise formulations that are not robust to human error. Reinforcement learning (RL) approaches do not require such models, and instead learn domain dynamics by exploring the environment and collecting rewards. However, RL approaches tend to require millions of episodes of experience and often learn policies that are not easily transferable to other tasks. In this paper, we address one aspect of the open problem of integrating these approaches: how can decision-making agents resolve discrepancies in their symbolic planning models while attempting to accomplish goals? We propose an integrated framework named SPOTTER that uses RL to augment and support ("spot") a planning agent by discovering new operators needed by the agent to accomplish goals that are initially unreachable for the agent. SPOTTER outperforms pure-RL approaches while also discovering transferable symbolic knowledge and does not require supervision, successful plan traces or any a priori knowledge about the missing planning operator. 
    more » « less
  6. null (Ed.)
  7. Human behavior is frequently guided by social and moral norms, and no human community can exist without norms. Robots that enter human societies must therefore behave in norm-conforming ways as well. However, currently there is no solid cognitive or computational model available of how human norms are represented, activated, and learned. We provide a conceptual and psychological analysis of key properties of human norms and identify the demands these properties put on any artificial agent that incorporates norms—demands on the format of norm representations, their structured organization, and their learning algorithms. 
    more » « less
  8. null (Ed.)