skip to main content

Search for: All records

Creators/Authors contains: "Schneider, Teseo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a code generator that converts unoptimized C++ code operating on sparse data into vectorized and parallel CPU or GPU kernels. Our approach unrolls the computation into a massive expression graph, performs redundant expression elimination, grouping, and then generates an architecture-specific kernel to solve the same problem, assuming that the sparsity pattern is fixed, which is a common scenario in many applications in computer graphics and scientific computing. We show that our approach scales to large problems and can achieve speedups of two orders of magnitude on CPUs and three orders of magnitude on GPUs, compared to a set of manually optimized CPU baselines. To demonstrate the practical applicability of our approach, we employ it to optimize popular algorithms with applications to physical simulation and interactive mesh deformation.
    Free, publicly-accessible full text available October 31, 2023
  2. Free, publicly-accessible full text available November 1, 2023
  3. Free, publicly-accessible full text available September 1, 2023
  4. The Finite Element Method (FEM) is widely used to solve discrete Partial Differential Equations (PDEs) in engineering and graphics applications. The popularity of FEM led to the development of a large family of variants, most of which require a tetrahedral or hexahedral mesh to construct the basis. While the theoretical properties of FEM basis (such as convergence rate, stability, etc.) are well understood under specific assumptions on the mesh quality, their practical performance, influenced both by the choice of the basis construction and quality of mesh generation, have not been systematically documented for large collections of automatically meshed 3D geometries. We introduce a set of benchmark problems involving most commonly solved elliptic PDEs, starting from simple cases with an analytical solution, moving to commonly used test problem setups, and using manufactured solutions for thousands of real-world, automatically meshed geometries. For all these cases, we use state-of-the-art meshing tools to create both tetrahedral and hexahedral meshes, and compare the performance of different element types for common elliptic PDEs. The goal of this benchmark is to enable comparison of complete FEM pipelines, from mesh generation to algebraic solver, and exploration of relative impact of different factors on the overall system performance. Asmore »a specific application of our geometry and benchmark dataset, we explore the question of relative advantages of unstructured (triangular/ tetrahedral) and structured (quadrilateral/hexahedral) discretizations. We observe that for Lagrange-type elements, while linear tetrahedral elements perform poorly, quadratic tetrahedral elements perform equally well or outperform hexahedral elements for our set of problems and currently available mesh generation algorithms. This observation suggests that for common problems in structural analysis, thermal analysis, and low Reynolds number flows, high-quality results can be obtained with unstructured tetrahedral meshes, which can be created robustly and automatically. We release the description of the benchmark problems, meshes, and reference implementation of our testing infrastructure to enable statistically significant comparisons between different FE methods, which we hope will be helpful in the development of new meshing and FEA techniques.« less
    Free, publicly-accessible full text available June 30, 2023
  5. Free, publicly-accessible full text available May 24, 2023