Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mobile devices continuously beacon Bluetooth Low Energy (BLE) advertisement packets. This has created the threat of attackers identifying and tracking a device by sniffing its BLE signals. To mitigate this threat, MAC address randomization has been deployed at the link-layer in most BLE transmitters. However, attackers can bypass MAC address randomization using lower-level physical-layer fingerprints resulting from manufacturing imperfections of radios. In this work, we demonstrate a practical and effective method of obfuscating physical-layer hardware imperfection fingerprints. Through theoretical analysis, simulations, and field evaluations, we design and evaluate our approach to hardware imperfection obfuscation. By analyzing data from thousands of BLE devices, we demonstrate obfuscation significantly reduces the accuracy of identifying a target device. This makes an attack impractical, even if a target is continuously observed for 24 hours. Furthermore, we demonstrate the practicality of this defense by implementing it by making firmware changes to commodity BLE chipsets.more » « lessFree, publicly-accessible full text available May 20, 2025
-
5G is a high-bandwidth low-latency communication technology that requires deploying new cellular base stations. The environmental cost of deploying a 5G cellular network remains unknown. In this work we answer several questions about the environmental impact of 5G deployment, including: Can we reuse minerals from discarded 4G base stations to build 5G or does 5G require new minerals that were not required in 4G base stations? And, how sustainable is this transition? We answered these questions buy surveying the minerals needed to build 5G base stations. We found that the key technologies behind 5G require additional rare-earth metals to build essential semiconductor components needed for 5G, such as yttrium, barium, gallium, and germanium. Additionally, since 5G needs many more base stations than 4G network to achieve the same coverage, we describe how 5G will likely increase the use of materials like copper, gold, and aluminum, all of which are difficult or impractical to recycle from the 4G base stations they will replace. We estimate that to provide coverage comparable to 4G in the United States, we will need about 600 million 5G base stations, which will consume thousands of tons of these metals and significant amount of fossil fuels, as well as will result in releasing toxic gases during material mining and refining. Despite these environment costs, we also describe the environmental benefits that a 5G network can offer.more » « less
-
Successful malware campaigns often rely on the ability of infected hosts to locate and contact their command-and-control (C2) servers. Malware campaigns often use DNS domains for this purpose, but DNS domains may be taken down by the registrar that sold them. In response to this threat, malware operators have begun using blockchain-based naming systems to store C2 server names. Blockchain naming systems are a threat to malware defenders because they are not subject to a centralized authority, such as a registrar, that can take down abused domains, either voluntarily or under legal pressure. In fact, blockchains are robust against a variety of interventions that work on DNS domains, which is bad news for defenders. We analyze the ecosystem of blockchain naming systems and identify new locations for defenders to stage interventions against malware. In particular, we find that malware is obligated to use centralized or semi-centralized infrastructure to connect to blockchain naming systems and modify the records stored within. In fact, scattered interventions have already been staged against this centralized infrastructure: we present case studies of several such instances. We also present a study of how blockchain naming systems are currently abused by malware operators, and discuss the factors that would cause a blockchain naming system to become an unstoppable threat. We conclude that existing blockchain naming systems still provide opportunities for defenders to prevent malware from contacting its C2 servers.more » « less
-
Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing.more » « less
-
In January and April 2021 we held the Workshop on Overcoming Measurement Barriers to Internet Research (WOMBIR) with the goal of understanding challenges in network and security data set collection and sharing. Most workshop attendees provided white papers describing their perspectives, and many participated in short-talks and discussion in two virtual workshops over five days. That discussion produced consensus around several points. First, many aspects of the Internet are characterized by decreasing visibility of important network properties, which is in tension with the Internet's role as critical infrastructure. We discussed three specific research areas that illustrate this tension: security, Internet access; and mobile networking. We discussed visibility challenges at all layers of the networking stack, and the challenge of gathering data and validating inferences. Important data sets require longitudinal (long-term, ongoing) data collection and sharing, support for which is more challenging for Internet research than other fields. We discussed why a combination of technical and policy methods are necessary to safeguard privacy when using or sharing measurement data. Workshop participant proposed several opportunities to accelerate progress, some of which require coordination across government, industry, and academia.more » « less
-
null (Ed.)This paper presents and evaluates Trufflehunter, a DNS cache snooping tool for estimating the prevalence of rare and sensitive Internet applications. Unlike previous efforts that have focused on small, misconfigured open DNS resolvers, Trufflehunter models the complex behavior of large multi-layer distributed caching infrastructures (e.g., such as Google Public DNS). In particular, using controlled experiments, we have inferred the caching strategies of the four most popular public DNS resolvers (Google Public DNS, Cloudflare Quad1, OpenDNS and Quad9). The large footprint of such resolvers presents an opportunity to observe rare domain usage, while preserving the privacy of the users accessing them. Using a controlled testbed, we evaluate how accurately Trufflehunter can estimate domain name usage across the U.S. Applying this technique in the wild, we provide a lower-bound estimate of the popularity of several rare and sensitive applications (most notably smartphone stalkerware) which are otherwise challenging to survey.more » « less
-
Security is a discipline that places significant expectations on lay users. Thus, there are a wide array of technologies and behaviors that we exhort end users to adopt and thereby reduce their security risk. However, the adoption of these "best practices" -- ranging from the use of antivirus products to actively keeping software updated -- is not well understood, nor is their practical impact on security risk well-established. This paper explores both of these issues via a largescale empirical measurement study covering approximately 15,000 computers over six months. We use passive monitoring to infer and characterize the prevalence of various security practices in situ as well as a range of other potentially security-relevant behaviors. We then explore the extent to which differences in key security behaviors impact real-world outcomes (i.e., that a device shows clear evidence of having been compromised).more » « less
-
This paper describes the Triton federated-avionics security testbed that supports testing real aircraft electronic systems for security vulnerabilities. Because modern aircraft are complex systems of systems, the Triton testbed allows multiple systems to be instantiated for analysis in order to observe the aggregate behavior of multiple aircraft systems and identify their potential impact on flight safety. We describe two attack scenarios that motivated the design of the Triton testbed: ACARS message spoofing and the software update process for aircraft systems. The testbed allows us to analyze both scenarios to determine whether adversarial interference in their expected operation could cause harm. This paper does not describe any vulnerabilities in real aircraft systems; instead, it describes the design of the Triton testbed and our experiences using it. One of the key features of the Triton testbed is the ability to mix simulated, emulated, and physical electronic systems as necessary for a particular experiment or analysis task. A physical system may interact with a simulated component or a system whose software is running in an emulator. To facilitate rapid reconfigurability, Triton is also entirely software reconfigurable: all wiring between components is virtual and can be changed without physical access to components. A prototype of the Triton testbed is used at two universities to evaluate the security of aircraft systems.more » « less