Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The first suite included high-pressure (HP), nominally dry experiments performed in piston-cylinder apparatus at: (1) T = 1050–1600 °C and P = 1.5 GPa and (2) T = 1500 °C and P = 2.5 GPa using yttrium aluminum garnet (YAG; Y3Al5O12) cubes. Second, HP H2O-saturated experiments were conducted at T = 900 °C and P = 1.0–1.5 GPa, wherein YAG crystals were packed into a YAG + Corundum powder, along with 18O-enriched H2O. Third, 1 atm experiments with YAG cubes were performed in a gas-mixing furnace at T = 1500–1600 °C under Ar flux. Finally, an experiment at T = 900 °C and P = 1.0 GPa was done using a pyrope cube embedded into pyrope powder and 18O-enriched H2O. Experiments using grossular were not successful. Profiles of 18O/(18O+16O) in the experimental charges were analyzed with three different secondary ion mass spectrometers (SIMS): sensitive high-resolution ion microprobe (SHRIMP II and SI), CAMECA IMS-1280, and NanoSIMS. Considering only the measured length of 18O diffusion profiles, similar results were obtained for YAG and pyrope annealed at 900 °C, suggesting limited effects of chemical composition on oxygen diffusivity. However, in both garnet types, several profiles deviate from the error function geometry, suggesting that the behavior of O in garnet cannot be fully described as simple concentration-independent diffusion, certainly in YAG and likely in natural pyrope as well. The experimental results are better described by invoking O diffusion via two distinct pathways with an inter-site reaction allowing O to move between these pathways. Modeling this process yields two diffusion coefficients (D values) for O, one of which is approximately two orders of magnitude higher than the other. Taken together, Arrhenius relationships are:logDm2s-1=-7.2(±1.3)+(-321(±32)kJmol-12.303RT) for the slow pathway, andlogDm2s-1=-5.4(±0.7)+(-321(±20)kJmol-12.303RT) for the fast pathway. We interpret the two pathways as representing diffusion following vacancy and inter-stitial mechanisms, respectively. Regardless, our new data suggest that the slow mechanism is prevalent in garnet with natural compositions, and thus is likely to control the retentivity of oxygen isotopic signatures in natural samples. The diffusivity of oxygen is similar to Fe-Mn diffusivity in garnet at 1000–1100 °C and Ca diffusivity at 850 °C. However, the activation energy for O diffusion is larger, leading to lower diffusivities at P-T conditions characterizing crustal metamorphism. Therefore, original O isotopic signatures can be retained in garnets showing major element zoning partially re-equilibrated by diffusion, with the uncertainty caveat of extrapolating the experimental data to lower temperature conditions.more » « less
-
Lode gold deposits, which are currently the world’s major gold supply, have been shown to be generated mostly by phase separation of metamorphic fluids and/or interaction between these fluids and wall rocks. Here we use garnet oxygen isotopes by secondary ion mass spectrometry to document the crucial role of magmatic hydrothermal fluids and their mixing with meteoric water in the formation of the world-class Dongping gold deposit in the North China Craton. Garnet grains from quartz veins of various paragenetic stages and the mineralized alteration envelope at Dongping have dynamic δ 18 O variations of 3.8 to −11.0‰, with large intragrain fluctuations up to 5.3‰. These values correspond to calculated δ 18 O values of 6.1 to −9.1‰ for the hydrothermal fluids from which the garnet formed. The isotope data, notably the cyclic alternation in δ 18 O within individual garnet grains, are best interpreted to reflect multiple pulses of magmatically derived fluids and subsequent mixing of each pulse with variable amounts of meteoric water. The results presented here allow us to quantify the significant interplay between magmatic hydrothermal fluids and meteoric water that spanned the entire mineralization history and triggered gold deposition of a lode gold deposit. This study highlights the potential use of in situ oxygen isotope analysis of garnet in tracing the origin and evolution of hydrothermal fluids in the Earth’s crust that may have formed other giant ore deposits.more » « less
-
The ability to constrain the petrogenesis of multiple serpentine generations recorded at the microscale is crucial for estimating the extent and conditions of modernversusfossil serpentinisation in ophiolites. To address matrix bias effects during oxygen isotope analysis by SIMS, we present the first investigation analysing antigorite in the compositional range Mg# = 77.5–99.5 mole %, using a CAMECA IMS‐1280 secondary ion mass spectrometer. Spot‐to‐spot homogeneity is ≤ 0.5‰ (2s) for the new antigorite reference materials. The relative bias between antigorite reference materials with different Mg/Fe ratios is described by a second‐order polynomial, and a maximum difference in bias of ~ 1.8‰ was measured for Mg# ~ 78 to 100. We observed a bias up to ~ 1.0‰ between lizardite and antigorite attributed to their different crystal structures. Orientation effects up to ~ 1‰ were observed in chrysotile. The new analytical protocol allowed the identification of oxygen isotope zoning up to ~ 7‰ in serpentine minerals from two serpentinites recovered from an area of active serpentinisation in the Samail ophiolite. Thus,in situanalysis is capable of resolving isotopic heterogeneity that may directly reflect changes in the physical and chemical conditions of multiple serpentinisation events in the Samail ophiolite.more » « less
An official website of the United States government
