skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Scoffoni, Christine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 24, 2024
  2. Free, publicly-accessible full text available October 1, 2023
  3. Summary

    A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside‐xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside‐xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside‐xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside‐xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.

     
    more » « less
  4. Understanding how environmental adaptations mediate plant and ecosystem responses becomes increasingly important under accelerating global environmental change. Multi-stemmed trees, for example, differ in form and function from single-stemmed trees and may possess physiological advantages that allow for persistence during stressful climatic events such as extended drought. Following the worst drought in Hawaii in a century, we examined patterns of stem abundance and turnover in a Hawaiian lowland dry forest (LDF) and a montane wet forest (MWF) to investigate how multi-stemmed trees might influence site persistence, and how stem abundance and turnover relate to key functional traits. We found stem abundance and multi-stemmed trees to be an important component for climate resilience within the LDF. The LDF had higher relative abundance of multi-stemmed trees, stem abundance, and mean stem abundance compared to a reference MWF. Within the LDF, multi-stemmed trees had higher relative stem abundance (i.e., percent composition of stems to the total number of stems in the LDF) and higher estimated aboveground carbon than single-stemmed trees. Stem abundance varied among species and tree size classes. Stem turnover (i.e., change in stem abundance between five-year censuses) varied among species and tree size classes and species mean stem turnover was correlated with mean species stem abundance per tree. At the plot level, stem abundance per tree is also a predictor of survival, though mortality did not differ between multiple- and single-stemmed trees. Lastly, species with higher mean stem abundance per tree tended to have traits associated with a higher light-saturated photosynthetic rate, suggesting greater productivity in periods with higher water supply. Identifying the traits that allow species and forest communities to persist in dry environments or respond to disturbance is useful for forecasting ecological climate resilience or potential for restoration in tropical dry forests. 
    more » « less
  5. Abstract

    Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVrefrelative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVreffor PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVrefenables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.

     
    more » « less
  6. Lawson, Tracy (Ed.)
    Abstract Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately –0.7 MPa and –1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = –1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)
    Different microclimates can have significant impact on the physiology of succulents that inhabit arid environments such as the Mojave Desert (California). We investigated variation in leaf physiology, morphology and anatomy of two dominant Mojave Desert monocots, Yucca brevifolia (Joshua tree) and Hesperoyucca whipplei , growing along a soil water availability gradient. Stomatal conductance ( g s ) and leaf thickness were recorded in the field at three different sites (north-western slope, south-eastern slope, and alluvial fan) in March of 2019. We sampled leaves from three individuals per site per species and measured in the lab relative water content at the time of g s measurements, saturated water content, cuticular conductance, leaf morphological traits (leaf area and length, leaf mass per area, % loss of thickness in the field and in dried leaves), and leaf venation. We found species varied in their g s : while Y. brevifolia showed significantly higher g s in the alluvial fan than in the slopes, H. whipplei was highest in the south-eastern slope. The differences in g s did not relate to differences in leaf water content, but rather to variation in number of veins per mm 2 in H. whipplei and leaf width in Y. brevifolia . Our results indicate that H. whipplei displays a higher water conservation strategy than Y. brevifolia . We discuss these differences and trends with water availability in relation to species’ plasticity in morphology and anatomy and the ecological consequences of differences in 3-dimensional venation architecture in these two species. 
    more » « less