Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sparse decision tree optimization has been one of the most fundamental problems in AI since its inception and is a challenge at the core of interpretable machine learning. Sparse decision tree optimization is computationally hard, and despite steady effort since the 1960's, breakthroughs have been made on the problem only within the past few years, primarily on the problem of finding optimal sparse decision trees. However, current state-of-the-art algorithms often require impractical amounts of computation time and memory to find optimal or near-optimal trees for some real-world datasets, particularly those having several continuous-valued features. Given that the search spaces of these decision tree optimization problems are massive, can we practically hope to find a sparse decision tree that competes in accuracy with a black box machine learning model? We address this problem via smart guessing strategies that can be applied to any optimal branch-and-bound-based decision tree algorithm. The guesses come from knowledge gleaned from black box models. We show that by using these guesses, we can reduce the run time by multiple orders of magnitude while providing bounds on how far the resulting trees can deviate from the black box's accuracy and expressive power. Our approach enables guesses about how to bin continuous features, the size of the tree, and lower bounds on the error for the optimal decision tree. Our experiments show that in many cases we can rapidly construct sparse decision trees that match the accuracy of black box models. To summarize: when you are having trouble optimizing, just guess.more » « less
-
Assembly programming is challenging, even for experts. Program synthesis, as an alternative to manual implementation, has the potential to enable both expert and non-expert users to generate programs in an automated fashion. However, current tools and techniques are unable to synthesize assembly programs larger than a few instructions. We present Assuage : ASsembly Synthesis Using A Guided Exploration, which is a parallel interactive assembly synthesizer that engages the user as an active collaborator, enabling synthesis to scale beyond current limits. Using Assuage, users can provide two types of semantically meaningful hints that expedite synthesis and allow for exploration of multiple possibilities simultaneously. Assuage exposes information about the underlying synthesis process using multiple representations to help users guide synthesis. We conducted a within-subjects study with twenty-one participants working on assembly programming tasks. With Assuage, participants with a wide range of expertise were able to achieve significantly higher success rates, perceived less subjective workload, and preferred the usefulness and usability of Assuage over a state of the art synthesis tool.more » « less
-
Advanced Persistent Threats (APTs) are difficult to detect due to their “low-and-slow” attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From modeling to detection, UNICORN tailors its design specifically for the unique characteristics of APTs. Through extensive yet time-efficient graph analysis, UNICORN explores provenance graphs that provide rich contextual and historical information to identify stealthy anomalous activities without pre-defined attack signatures. Using a graph sketching technique, it summarizes long-running system execution with space efficiency to combat slow-acting attacks that take place over a long time span. UNICORN further improves its detection capability using a novel modeling approach to understand long-term behavior as the system evolves. Our evaluation shows that UNICORN outperforms an existing state-of-the-art APT detection system and detects real-life APT scenarios with high accuracy.more » « less
-
We evaluated Intel ® Optane™ DC Persistent Memory and found that Intel's persistent memory is highly sensitive to data locality, size, and access patterns, which becomes clearer by optimizing both virtual memory page size and data layout for locality. Using the Polybench high-performance computing benchmark suite and controlling for mapped page size, we evaluate persistent memory (PMEM) performance relative to DRAM. In particular, the Linux PMEM support maps preferentially maps persistent memory in large pages while always mapping DRAM to small pages. We observed using large pages for PMEM and small pages for DRAM can create a 5x difference in performance, dwarfing other effects discussed in the literature. We found PMEM performance comparable to DRAM performance for the majority of tests when controlled for page size and optimized for data locality.more » « less
-
Identifying the root cause and impact of a system intrusion remains a foundational challenge in computer security. Digital provenance provides a detailed history of the flow of information within a computing system, connecting suspicious events to their root causes. Although existing provenance-based auditing techniques provide value in forensic analysis, they assume that such analysis takes place only retrospectively. Such post-hoc analysis is insufficient for realtime security applications; moreover, even for forensic tasks, prior provenance collection systems exhibited poor performance and scalability, jeopardizing the timeliness of query responses. We present CamQuery, which provides inline, realtime provenance analysis, making it suitable for implementing security applications. CamQuery is a Linux Security Module that offers support for both userspace and in-kernel execution of analysis applications. We demonstrate the applicability of CamQuery to a variety of runtime security applications including data loss prevention, intrusion detection, and regulatory compliance. In evaluation, we demonstrate that CamQuery reduces the latency of realtime query mechanisms, while imposing minimal overheads on system execution. CamQuery thus enables the further deployment of provenance-based technologies to address central challenges in computer security.more » « less
An official website of the United States government

Full Text Available