Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Abstract Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high‐quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3(STO), MgO, LaAlO3, a‐Al2O3,and many others. Recent successes in transferring these complex oxides as free‐standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost‐effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high‐resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre‐strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high‐quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Large language models have gained significant popularity and are often provided as a service (i.e., LLMaaS). Companies like OpenAI and Google provide online APIs of LLMs to allow downstream users to create innovative applications. Despite its popularity, LLM safety and quality assurance is a well-recognized concern in the real world, requiring extra efforts for testing these LLMs. Unfortunately, while end-to-end services like ChatGPT have garnered rising attention in terms of testing, the LLMaaS embeddings have comparatively received less scrutiny. We state the importance of testing and uncovering problematic individual embeddings without considering downstream applications. The abstraction and non-interpretability of embedded vectors, combined with the black-box inaccessibility of LLMaaS, make testing a challenging puzzle. This paper proposes COSTELLO, a black-box approach to reveal potential defects in abstract embedding vectors from LLMaaS bycontrastive testing. Our intuition is that high-quality LLMs can adequately capture the semantic relationships of the input texts and properly represent their relationships in the high-dimensional space. For the given interface of LLMaaS and seed inputs, COSTELLO can automatically generate test suites and output words with potential problematic embeddings. The idea is to synthesize contrastive samples with guidance, including positive and negative samples, by mutating seed inputs. Our synthesis guide will leverage task-specific properties to control the mutation procedure and generate samples with known partial relationships in the high-dimensional space. Thus, we can compare the expected relationship (oracle) and embedding distance (output of LLMs) to locate potential buggy cases. We evaluate COSTELLO on 42 open-source (encoder-based) language models and two real-world commercial LLMaaS. Experimental results show that COSTELLO can effectively detect semantic violations, where more than 62% of violations on average result in erroneous behaviors (e.g., unfairness) of downstream applications.more » « less
- 
            Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available